radial growth
Recently Published Documents


TOTAL DOCUMENTS

1498
(FIVE YEARS 370)

H-INDEX

57
(FIVE YEARS 6)

2024 ◽  
Vol 84 ◽  
Author(s):  
A. Nadeem ◽  
S. Hussain ◽  
A. Fareed ◽  
M. Fahim ◽  
T. Iqbal ◽  
...  

Abstract Maydis leaf blight, caused by Bipolaris maydis, is an important disease of maize crop in Khyber Pakhtunkhwa (KP) Pakistan. Fifteen isolates of the pathogen, collected across KP, were studied for variability based on phenotypic and molecular markers. Significant variability among the isolates was observed when assessed using phenotypic traits such as radial growth, spore concentration, fungicide sensitivity and virulence. The isolates were classified into six culture groups based on colour, texture and margins of the colony. Conidial morphology was also variable. These were either straight or slightly curved and light to dark brown in colour. Fungicide test showed significant variation in the degree of sensitivity against Carbendazim. Isolate Bm8 exhibited maximum radial growth on carbendazim spiked plates. Conversely, isolate Bm15 showed the lowest radial growth. Variations in virulence pattern of the isolates were evident when a susceptible maize variety Azam was inoculated with spores of B. maydis. Genetic variability amongst the isolates was also estimated by RAPD as well as sequencing of ITS region. The RAPD dendrogram grouped all the isolates into two major clusters. Average genetic distance ranged from 0.6% to 100%, indicating a diverse genetic gap among the isolates. Maximum genetic distance was found between isolates Bm9 and Bm10 as well as Bm2 and Bm8. Conversely, isolates Bm13 and Bm15 were at minimum genetic distance. Phylogenetic dendrogram based on sequencing of ITS region grouped all the isolates into a single major cluster. The clusters in both the dendrogram neither correlate to the geographical distribution nor to the morphological characteristics.


2022 ◽  
Vol 313 ◽  
pp. 108764
Author(s):  
Alberto Arzac ◽  
Daniel Diaz de Quijano ◽  
Kseniia I. Khotcinskaia ◽  
Ivan I. Tychkov ◽  
Viktor I. Voronin ◽  
...  

Author(s):  
Andrei Lapenis ◽  
George Robinson ◽  
Gregory B. Lawrence

Here we investigate the possible<sup></sup> future response of white spruce (Picea glauca) to a warmer climate by studying trees planted 90 years ago near the southern limit of their climate tolerance in central New York, 300 km south of the boreal forest where this species is prevalent. We employed high-frequency recording dendrometers to determine radial growth phenology of six mature white spruce trees during 2013-2017. Results demonstrate significant reductions in the length of radial growth periods inversely proportional to the number of hot days with air temperature exceeding 30 oC. During years with very hot summers, the start of radial growth began about 3 days earlier than the 2013-2017 average. However, in those same years the end of radial growth was also about 17 days earlier resulting in a shorter (70 versus 100 day), radial growth season. Abundant (350-500 mm) summer precipitation, which resulted in soil moisture values of 20-30% allowed us to dismiss drought as a factor. Instead, a likely cause of reduced radial growth was mean temperature that exceeded daily average of 30<sup> o</sup>C that lead to photoinhibition.


Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 253
Author(s):  
Vladimir G. Dubrovskii

Selective area growth (SAG) of III-V nanowires (NWs) by molecular beam epitaxy (MBE) and related epitaxy techniques offer several advantages over growth on unpatterned substrates. Here, an analytic model for the total flux of group III atoms impinging NWs is presented, which accounts for specular re-emission from the mask surface and the shadowing effect in the absence of surface diffusion from the substrate. An expression is given for the shadowing length of NWs corresponding to the full shadowing of the mask. Axial and radial NW growths are considered in different stages, including the stage of purely axial growth, intermediate stage with radial growth, and asymptotic stage, where the NWs receive the maximum flux determined by the array pitch. The model provides good fits with the data obtained for different vapor–liquid–solid and catalyst-free III-V NWs.


2022 ◽  
Author(s):  
Ulyana Bliznyuk ◽  
Natalya Chulikova ◽  
Anna Malyuga

Crops, especially potatoes, are prone to a wide range of fungal, viral and bacterial diseases, including black scurf caused by Rhizoctoniasolani. This study focused on the radiation treatment of the phytopathogenic fungus RhizoctoniasolaniKuhn, grown from sclerotium irradiated with 1 MeV electrons in the dose range from 20 to 4500 Gy. The doses absorbed by the sclerotia were determined using computer simulation. The growth of the fungus samples was monitored after 24, 48, 72, and 96 hours from the time of seeding. It was found that the dependence of the radial growth velocity of R. solani on the time after irradiation with doses ranging from 20to 1800 Gywas nonlinear. Irradiation at a dose over 4500 Gyled to complete suppression of the germination of R. solani sclerotia. Keywords: radiation treatment, electron radiation, radiation dose, sclerotia of Rhizoctoniasolani, Kuhn, radial velocity of growth


2022 ◽  
Vol 4 ◽  
Author(s):  
Hui Wang ◽  
Yangcui Ning ◽  
Chunlan Liu ◽  
Peng Xu ◽  
Wentao Zhang

We conducted dendroclimatological study on three dominant conifer tree species, Pinus koraiensis, Larix olgensis, and Picea jezoensis, in northeastern China for a better understanding of climate change impacts on temperate forest growth, by discussing the radial growth relationships of these tree species and projecting their radial growth trends under the future climate change scenarios. Based on the tree-ring samples collected from the upper altitude of Changbai Mountain, ring width chronologies were built to examine the growth relationships, and regression equations were established to project the future growth of the species under future climate change projected by the five general circulation models (GCMs) and four representative concentration pathway (RCP) scenarios. Although both temperature and precipitation showed varying degrees of relationships with growth of these three tree species, the limiting climate factors were species-specific. The tree-ring growth of P. koraiensis was limited by the summer temperature and precipitation at the end of growth, namely, significant positive correlations with the current July temperature and the previous September precipitation. Growth of L. olgensis was limited by the temperature before growing season, for its chronology was negatively correlated with the current February and previous December temperature (p &lt; 0.05). The climatic conditions before and after growing season seemed to be the limiting factors of P. jezoensis growth, which was negatively correlated with the current February to April temperature and the current September temperature (p &lt; 0.05), and positively correlated with the current August precipitation (p &lt; 0.05). Under the gradual increasing of temperature predicted by the five GCMs and four RCP scenarios, the radial growth of P. Koraiensis will relatively increase, while that of L. olgensis and P. jezoensis will relatively decrease comparing to the base-line period (1981–2010). The specific growth–climate relationships and the future growth trends are species dependent. P. Koraiensis was the more suitable tree species for the forestation to maintain the sustainable forest in Changbai Mountain.


Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 99
Author(s):  
Jiachuan Wang ◽  
Shuheng Li ◽  
Yili Guo ◽  
Qi Yang ◽  
Rui Ren ◽  
...  

Larix principis-rupprechtii is an important afforestation tree species in the North China alpine coniferous forest belt. Studying the correlations and response relationships between Larix principis-rupprechtii radial growth and climatic factors at different elevations is helpful for understanding the growth trends of L. principis-rupprechtiind its long-term sensitivity and adaptability to climate change. Pearson correlation, redundancy (RDA), and sliding analysis were performed to study the correlations and dynamic relationships between radial growth and climatic factors. The main conclusions are as follows: (1) The three-elevation standard chronologies all exhibited high characteristic values, contained rich climate information and were suitable for tree-ring climatological analyses. (2) Both temperature and precipitation restricted low-elevation L. principis-rupprechtii radial growth, while monthly maximum temperatures mainly affected mid-high-elevation L. principis-rupprechtii radial growth. (3) Mid-elevation L. principis-rupprechtii radial growth responded to climate factors with a “lag effect” and was not restricted by spring and early summer drought. (4) Long-term sliding analysis showed that spring temperatures and winter precipitation were the main climatic factors restricting L. principis-rupprechtii growth under warming and drying climate trends at different elevations. The tree-ring width index and Palmer drought severity index (PDSI) were positively correlated, indicating that L. principis-rupprechtii growth is somewhat restricted by drought. These results provide a reference and guidance for L. principis-rupprechtii management and sustainable development in different regions under warming and drying background climate trends.


Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 72
Author(s):  
Changliang Qi ◽  
Liang Jiao ◽  
Ruhong Xue ◽  
Xuan Wu ◽  
Dashi Du

To explore the difference in the response of the radial growth of Pinus tabulaeformis and Picea crassifolia on different timescales to climate factors in the eastern part of Qilian Mountains, we used dendrochronology to select four different timescales (day, pentad (5 days), dekad (10 days), and month) for exploration. The primary conclusions were as follows: (1) According to an investigation of the dynamic correlations between radial growth and climate conditions, drought during the growing season has been the dominant limiting factor for radial growth across both species in recent decades; (2) climate data at the dekad scale are best for examining the correlations between radial growth and climate variables; and (3) based on basal area increment, P. tabuliformis in the study area showed a trend of first an increase and then a decrease, while P. crassifolia showed a trend of continuous increase (BAI). As the climate continues to warm in the future, forest ecosystems in arid and semi-arid areas will be more susceptible to severe drought, which will lead to a decline in tree growth, death, and community deterioration. As a result, it is critical to implement appropriate management approaches for various species based on the peculiarities of their climate change responses.


Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 44
Author(s):  
Li Qin ◽  
Kainar Bolatov ◽  
Yujiang Yuan ◽  
Huaming Shang ◽  
Shulong Yu ◽  
...  

Snow has an important impact on forest ecosystems in mountainous areas. In this study, we developed 14 tree-ring-width chronologies of Schrenk spruce (Picea schrenkiana Fisch. et Mey.) for the Ili-Balkhash Basin (IBB), Central Asia. We analyzed the response of radial growth to temperature, precipitation and snow parameters. The results show that previous winter and current summer precipitation have an important influence on the radial growth of P. schrenkiana. Further, we find spatially inhomogeneous effects of snow on subsequent growing-season tree growth in IBB. The radial growth response of P. schrenkiana to snow shows a weak–strong–weak trend from west to east across the Ili-Balkhash Basin. This spatial difference is mainly related to precipitation, as snow has little effect on tree growth in regions that receive more precipitation. Thus, winter snow has an important influence on the radial growth of trees in regions that receive limited amounts of precipitation.


2022 ◽  
pp. 125922
Author(s):  
Paweł Matulewski ◽  
Agata Buchwal ◽  
Holger Gärtner ◽  
Andrzej M. Jagodziński ◽  
Katarina Čufar

Sign in / Sign up

Export Citation Format

Share Document