scholarly journals On Kadison's condition for extreme points of the unit ball in a B*-algebra

1969 ◽  
Vol 16 (3) ◽  
pp. 245-250 ◽  
Author(s):  
Bertram Yood

Let B be a complex Banach algebra with an identity 1 and an involution x→x*. Kadison (1) has shown that, if B is a B*-algebra, [the set of extreme points of its unit ball coincides with the set of elements x of B for which

1979 ◽  
Vol 31 (1) ◽  
pp. 9-16 ◽  
Author(s):  
Frank Forelli

1.1. We will denote by B the open unit ball in Cn, and we will denote by H(B) the class of all holomorphic functions on B. LetThus N(B) is convex (and compact in the compact open topology). We think that the structure of N(B) is of interest and importance. Thus we proved in [1] that if(1.1)if(1.2)and if n≧ 2, then g is an extreme point of N(B). We will denote by E(B) the class of all extreme points of N(B). If n = 1 and if (1.2) holds, then as is well known g ∈ E(B) if and only if(1.3)


1974 ◽  
Vol 19 (1) ◽  
pp. 59-69 ◽  
Author(s):  
F. F. Bonsall ◽  
A. C. Thompson

Let A denote a complex Banach algebra with unit, Inv(A) the set of invertible elements of A, Sp(a) and r(a) the spectrum and spectral radius respectively of an element a of A. Let Γ denote the set of elements of A whose spectra contain non-negative real numbers, i.e.


1979 ◽  
Vol 22 (3) ◽  
pp. 271-275 ◽  
Author(s):  
G. J. Murphy ◽  
T. T. West

If A is a complex Banach algebra (not necessarily unital) and x∈A, σ(x) will denote the spectrum and spectral radius of x in A. If I is a closed two-sided ideal in A let x + I denote the coset in the quotient algebra A/I containing x. Then


2003 ◽  
Vol 67 (3) ◽  
pp. 365-375
Author(s):  
K. J. Wirths ◽  
J. Xiao

For p ∈ (0, ∞) define Qp0(∂Δ) as the space of all Lebesgue measurable complex-valued functions f; on the unit circle ∂Δ for which ∫∂Δf;(z)|dz|/(2π) = 0 andas the open subarc I of ∂Δ varies. Note that each Qp,0(∂Δ) lies between the Dirichlet space and Sarason's vanishing mean oscillation space. This paper determines the extreme points of the closed unit ball of Qp,0(∂Δ) equipped with an appropriate norm.


1968 ◽  
Vol 8 (3) ◽  
pp. 447-456 ◽  
Author(s):  
J. B. Miller

Let be a complex Banach algebra, possibly non-commutative, with identity e. By a Reynolds operator we mean here a bounded linear operator T: → satisfying the Reynolds identity for all x, y ∈ . We prove that under certain conditions the resolvent of T, R(p, T) = (pI−T)−1, has the form where s = −log(e−Te) and exp y = e+y+y2/2!+….


1987 ◽  
Vol 39 (3) ◽  
pp. 625-630
Author(s):  
G. N. Hile ◽  
W. E. Pfaffenberger

The concept of the spectrum of A relative to Q, where A and Q commute and are elements in a complex Banach algebra with identity I, was developed in [1]. A complex number z is in the Q-resolvent set of A if and only if is invertible in otherwise, z is in the Q-spectrum of A, or spectrum of A relative to Q. One result from [1] was the following.THEOREM. Suppose no points in the ordinary spectrum of Q have unit magnitude. Let C be a simple closed rectifiable curve which lies in the Q-resolvent of A, and let*where P is defined asxs•


2008 ◽  
Vol 51 (2) ◽  
pp. 236-248
Author(s):  
Victor N. Konovalov ◽  
Kirill A. Kopotun

AbstractLet Bp be the unit ball in 𝕃p, 0 < p < 1, and let , s ∈ ℕ, be the set of all s-monotone functions on a finite interval I, i.e., consists of all functions x : I ⟼ ℝ such that the divided differences [x; t0, … , ts] of order s are nonnegative for all choices of (s + 1) distinct points t0, … , ts ∈ I. For the classes Bp := ∩ Bp, we obtain exact orders of Kolmogorov, linear and pseudo-dimensional widths in the spaces , 0 < q < p < 1:


2008 ◽  
Vol 60 (1) ◽  
pp. 3-32 ◽  
Author(s):  
Károly Böröczky ◽  
Károly J. Böröczky ◽  
Carsten Schütt ◽  
Gergely Wintsche

AbstractGiven r > 1, we consider convex bodies in En which contain a fixed unit ball, and whose extreme points are of distance at least r from the centre of the unit ball, and we investigate how well these convex bodies approximate the unit ball in terms of volume, surface area and mean width. As r tends to one, we prove asymptotic formulae for the error of the approximation, and provide good estimates on the involved constants depending on the dimension.


1980 ◽  
Vol 21 (1) ◽  
pp. 183-185
Author(s):  
C. K. Fong

Let A be a complex Banach algebra with unit 1 satisfying ∥1∥ = 1. An element u in A is said to be unitary if it is invertible and ∥u∥ = ∥u−1∥ = 1. An element h in A is said to be hermitian if ∥exp(ith)∥ = 1 for all real t; that is, exp(ith) is unitary for all real t. Suppose that J is a closed two-sided ideal and π: A → A/J is the quotient mapping. It is easy to see that if x in A is hermitian (resp. unitary), then so is π(x) in A/J. We consider the following general question which is the converse of the above statement: given a hermitian (resp. unitary) element y in A/J, can we find a hermitian (resp. unitary) element x in A such that π(x)=y? (The author has learned that this question, in a more restrictive form, was raised by F. F. Bonsall and that some special cases were investigated; see [1], [2].) In the present note, we give a partial answer to this question under the assumption that A is finite dimensional.


Sign in / Sign up

Export Citation Format

Share Document