Kolmogorov, Linear and Pseudo-Dimensional Widths of Classes of s-Monotone Functions in 𝕃p, 0 < p < 1

2008 ◽  
Vol 51 (2) ◽  
pp. 236-248
Author(s):  
Victor N. Konovalov ◽  
Kirill A. Kopotun

AbstractLet Bp be the unit ball in 𝕃p, 0 < p < 1, and let , s ∈ ℕ, be the set of all s-monotone functions on a finite interval I, i.e., consists of all functions x : I ⟼ ℝ such that the divided differences [x; t0, … , ts] of order s are nonnegative for all choices of (s + 1) distinct points t0, … , ts ∈ I. For the classes Bp := ∩ Bp, we obtain exact orders of Kolmogorov, linear and pseudo-dimensional widths in the spaces , 0 < q < p < 1:

1979 ◽  
Vol 31 (5) ◽  
pp. 1012-1016 ◽  
Author(s):  
John Phillips ◽  
Iain Raeburn

Let A and B be C*-algebras acting on a Hilbert space H, and letwhere A1 is the unit ball in A and d(a, B1) denotes the distance of a from B1. We shall consider the following problem: if ‖A – B‖ is sufficiently small, does it follow that there is a unitary operator u such that uAu* = B?Such questions were first considered by Kadison and Kastler in [9], and have received considerable attention. In particular in the case where A is an approximately finite-dimensional (or hyperfinite) von Neumann algebra, the question has an affirmative answer (cf [3], [8], [12]). We shall show that in the case where A and B are approximately finite-dimensional C*-algebras (AF-algebras) the problem also has a positive answer.


1979 ◽  
Vol 31 (1) ◽  
pp. 9-16 ◽  
Author(s):  
Frank Forelli

1.1. We will denote by B the open unit ball in Cn, and we will denote by H(B) the class of all holomorphic functions on B. LetThus N(B) is convex (and compact in the compact open topology). We think that the structure of N(B) is of interest and importance. Thus we proved in [1] that if(1.1)if(1.2)and if n≧ 2, then g is an extreme point of N(B). We will denote by E(B) the class of all extreme points of N(B). If n = 1 and if (1.2) holds, then as is well known g ∈ E(B) if and only if(1.3)


1969 ◽  
Vol 16 (3) ◽  
pp. 245-250 ◽  
Author(s):  
Bertram Yood

Let B be a complex Banach algebra with an identity 1 and an involution x→x*. Kadison (1) has shown that, if B is a B*-algebra, [the set of extreme points of its unit ball coincides with the set of elements x of B for which


1953 ◽  
Vol 9 (1) ◽  
pp. 44-52 ◽  
Author(s):  
L. R. Shenton

1. Let w(x) be a non-negative weight function for the finite interval (a, b) such that exists and is positive, and let Tr(x), r = 0, 1, 2,…be the corresponding orthonormal system of polynomials. Then if F(x) is continuous on (a, b) and has “Fourier” coefficientsParseval's formula gives


1982 ◽  
Vol 34 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Eric Sawyer

The main purpose of this note is to prove a special case of the following conjecture.Conjecture. If F is holomorphic on the unit ball Bn in Cn and has positive real part, then F is in Hp(Bn) for 0 < p < ½(n + 1).Here Hp(Bn) (0 < p < ∞) denote the usual Hardy spaces of holomorphic functions on Bn. See below for definitions. We remark that the conjecture is known for 0 < p < 1 and that some evidence for it already exists in the literature; for example [1, Theorems 3.11 and 3.15] where it is shown that a particular extreme element of the convex cone of functionsis in Hp(B2) for 0 < p < 3/2.


2011 ◽  
Vol 85 (2) ◽  
pp. 307-314 ◽  
Author(s):  
ZHANGJIAN HU

AbstractLet Ap(φ) be the pth Bergman space consisting of all holomorphic functions f on the unit ball B of ℂn for which $\|f\|^p_{p,\varphi }= \int _B |f(z)|^p \varphi (z) \,dA(z)\lt +\infty $, where φ is a given normal weight. Let Tg be the extended Cesàro operator with holomorphic symbol g. The essential norm of Tg as an operator from Ap (φ) to Aq (φ) is denoted by $\|T_g\|_{e, A^p (\varphi )\to A^q (\varphi )} $. In this paper it is proved that, for p≤q, with 1/k=(1/p)−(1/q) , where ℜg(z) is the radial derivative of g; and for p>q, with 1/s=(1/q)−(1/p) .


1964 ◽  
Vol 1 (01) ◽  
pp. 85-120 ◽  
Author(s):  
J. Keilson

Homogeneous additive processes on a finite or semi-infinite interval have been studied in many forms. Wald's identity for the first passage process on the finite interval (see for example Miller, 1961), the waiting time process of Lindley (1952), and a variety of problems in the theory of queues, dams, and inventories come to mind. These processes have been treated by and large by methods in the complex plane. Lindley's discrete parameter process on the continuum, for example, described by where the ξ n are independent identically distributed random variables, has been discussed by Wiener-Hopf methods in recent years by Lindley (1952), Smith (1953), Kemperman (1961), Keilson (1961), and many others. A review of earlier studies is given by Kemperman.


1947 ◽  
Vol 43 (3) ◽  
pp. 289-306 ◽  
Author(s):  
Sheila M. Edmonds

The Parseval formulae for Fourier cosine and sine transforms,are of course most widely known in connexion with the classical theorems of Plancherel on functions of the class L2 (whose transforms are defined by mean convergence), and with their generalizations. We cannot expect to obtain anything as elegant as the ‘L2’ results when we consider (1) for functions of other kinds. Nevertheless, since the most obvious way of defining Fourier transforms is by means of Lebesgue or Cauchy integrals, we naturally wish to know how far the formulae (1) hold good for transforms obtained in this way. The two most familiar classes of functions having such transforms are:(i) functions f(t) integrable in the Lebesgue sense in (0, ∞), whose transforms Fe(x) and Fs(x) are defined by the Lebesgue integrals respectively; and(ii) functions f(t) which decrease in (0, ∞), tend to zero as t → ∞, and are integrable over any finite interval (0, T); in this case the transforms are defined by the Cauchy integrals .


2009 ◽  
Vol 146 (1) ◽  
pp. 213-223 ◽  
Author(s):  
KIRILL KOPOTUN

AbstractLetkbe the set of allk-monotone functions on (−1, 1), i.e., those functionsffor which thekth divided differences [x0,. . .,xk;f] are nonnegative for all choices of (k+1) distinct pointsx0,. . .,xkin (−1, 1). We obtain estimates (which are exact in a certain sense) ofkth Ditzian–Totikq-moduli of smoothness of functions ink∩p(−1, 1), where 1 ≤q<p≤ ∞, and discuss several applications of these estimates.


1964 ◽  
Vol 1 (1) ◽  
pp. 85-120 ◽  
Author(s):  
J. Keilson

Homogeneous additive processes on a finite or semi-infinite interval have been studied in many forms. Wald's identity for the first passage process on the finite interval (see for example Miller, 1961), the waiting time process of Lindley (1952), and a variety of problems in the theory of queues, dams, and inventories come to mind. These processes have been treated by and large by methods in the complex plane. Lindley's discrete parameter process on the continuum, for example, described by where the ξn are independent identically distributed random variables, has been discussed by Wiener-Hopf methods in recent years by Lindley (1952), Smith (1953), Kemperman (1961), Keilson (1961), and many others. A review of earlier studies is given by Kemperman.


Sign in / Sign up

Export Citation Format

Share Document