scholarly journals M. C. Beltrametti and A. J. Sommese The adjunction theory of complex projective varieties (de Gruyter Expositions in Mathematics Vol. 16, de Gruyter, Berlin, New York 1995) xxi + 398 pp., 3 11 014355 0, about £100.

1996 ◽  
Vol 39 (1) ◽  
pp. 187-187
Author(s):  
E. B. Nasatyr
2013 ◽  
Vol 24 (02) ◽  
pp. 1350007 ◽  
Author(s):  
MARCO ANDREATTA

Let (X, L) be a quasi-polarized pair, i.e. X is a normal complex projective variety and L is a nef and big line bundle on it. We study, up to birational equivalence, the positivity (nefness) of the adjoint bundles KX + rL for high rational numbers r. For this we run a Minimal Model Program with scaling relative to the divisor KX + rL. We give then some applications, namely the classification up to birational equivalence of quasi-polarized pairs with sectional genus 0, 1 and of embedded projective varieties X ⊂ ℙN with degree smaller than 2 codim ℙN(X) + 2.


Author(s):  
ELEONORA A. ROMANO ◽  
JAROSŁAW A. WIŚNIEWSKI

Abstract Let X be a complex projective manifold, L an ample line bundle on X, and assume that we have a ℂ* action on (X;L). We classify such triples (X; L;ℂ*) for which the closure of a general orbit of the ℂ* action is of degree ≤ 3 with respect to L and, in addition, the source and the sink of the action are isolated fixed points, and the ℂ* action on the normal bundle of every fixed point component has weights ±1. We treat this situation by relating it to the classical adjunction theory. As an application, we prove that contact Fano manifolds of dimension 11 and 13 are homogeneous if their group of automorphisms is reductive of rank ≥ 2.


2013 ◽  
Vol 149 (3) ◽  
pp. 481-494 ◽  
Author(s):  
François Charles ◽  
Eyal Markman

AbstractWe prove the standard conjectures for complex projective varieties that are deformations of the Hilbert scheme of points on a K3 surface. The proof involves Verbitsky’s theory of hyperholomorphic sheaves and a study of the cohomology algebra of Hilbert schemes of K3 surfaces.


Author(s):  
Francesco Bei ◽  
Paolo Piazza

Abstract Let $(X,h)$ be a compact and irreducible Hermitian complex space. This paper is devoted to various questions concerning the analytic K-homology of $(X,h)$. In the 1st part, assuming either $\dim (\operatorname{sing}(X))=0$ or $\dim (X)=2$, we show that the rolled-up operator of the minimal $L^2$-$\overline{\partial }$ complex, denoted here $\overline{\eth }_{\textrm{rel}}$, induces a class in $K_0 (X)\equiv KK_0(C(X),\mathbb{C})$. A similar result, assuming $\dim (\operatorname{sing}(X))=0$, is proved also for $\overline{\eth }_{\textrm{abs}}$, the rolled-up operator of the maximal $L^2$-$\overline{\partial }$ complex. We then show that when $\dim (\operatorname{sing}(X))=0$ we have $[\overline{\eth }_{\textrm{rel}}]=\pi _*[\overline{\eth }_M]$ with $\pi :M\rightarrow X$ an arbitrary resolution and with $[\overline{\eth }_M]\in K_0 (M)$ the analytic K-homology class induced by $\overline{\partial }+\overline{\partial }^t$ on $M$. In the 2nd part of the paper we focus on complex projective varieties $(V,h)$ endowed with the Fubini–Study metric. First, assuming $\dim (V)\leq 2$, we compare the Baum–Fulton–MacPherson K-homology class of $V$ with the class defined analytically through the rolled-up operator of any $L^2$-$\overline{\partial }$ complex. We show that there is no $L^2$-$\overline{\partial }$ complex on $(\operatorname{reg}(V),h)$ whose rolled-up operator induces a K-homology class that equals the Baum–Fulton–MacPherson class. Finally in the last part of the paper we prove that under suitable assumptions on $V$ the push-forward of $[\overline{\eth }_{\textrm{rel}}]$ in the K-homology of the classifying space of the fundamental group of $V$ is a birational invariant.


Sign in / Sign up

Export Citation Format

Share Document