scholarly journals A new proof of N. J. Young's theorem on the orbits of the action of the symplectic group

1997 ◽  
Vol 40 (2) ◽  
pp. 309-315
Author(s):  
Dan Timotin

The group of symplectic transformations acts on the unit ball of a Hilbert space. The structure of the orbits has been determined by N. J. Young in [8]. We provide a new proof of this theorem; it is slightly simpler than the original one, and does not involve Brown–Douglas–Fillmore theory. Moreover, the steps followed hopefully throw some additional light on the subject. We rely heavily on previous work of Khatskevich, Shmulyan and Shulman ([5, 6, 7[); the proofs of the results used are included for completeness.

1979 ◽  
Vol 31 (5) ◽  
pp. 1012-1016 ◽  
Author(s):  
John Phillips ◽  
Iain Raeburn

Let A and B be C*-algebras acting on a Hilbert space H, and letwhere A1 is the unit ball in A and d(a, B1) denotes the distance of a from B1. We shall consider the following problem: if ‖A – B‖ is sufficiently small, does it follow that there is a unitary operator u such that uAu* = B?Such questions were first considered by Kadison and Kastler in [9], and have received considerable attention. In particular in the case where A is an approximately finite-dimensional (or hyperfinite) von Neumann algebra, the question has an affirmative answer (cf [3], [8], [12]). We shall show that in the case where A and B are approximately finite-dimensional C*-algebras (AF-algebras) the problem also has a positive answer.


2018 ◽  
Vol 69 (3) ◽  
pp. 695-711
Author(s):  
Zhenghua Xu
Keyword(s):  

1966 ◽  
Vol 18 ◽  
pp. 897-900 ◽  
Author(s):  
Peter A. Fillmore

In (2) Halmos and Kakutani proved that any unitary operator on an infinite-dimensional Hilbert space is a product of at most four symmetries (self-adjoint unitaries). It is the purpose of this paper to show that if the unitary is an element of a properly infinite von Neumann algebraA(i.e., one with no finite non-zero central projections), then the symmetries may be chosen fromA.A principal tool used in establishing this result is Theorem 1, which was proved by Murray and von Neumann (6, 3.2.3) for type II1factors; see also (3, Lemma 5). The author would like to thank David Topping for raising the question, and for several stimulating conversations on the subject. He is also indebted to the referee for several helpful suggestions.


2011 ◽  
Vol 09 (06) ◽  
pp. 1449-1457
Author(s):  
JIAN-WEI XU

In Hilbert space of n qubits, we introduce symplectic space (n odd) or orthogonal space (n even) via the spin-flip operator. Under this mathematical structure we discuss some properties of n qubits, including homomorphically mapping local operations of n qubits into symplectic group or orthogonal group, and proving that the generalized "magic basis" is just the biorthonormal basis (i.e. the orthonormal basis of both Hilbert space and the orthogonal space). Finally, a demonstrated example is given to discuss the application in physics of this mathematical structure.


1978 ◽  
Vol 30 (01) ◽  
pp. 22-31 ◽  
Author(s):  
Kyong T. Hahn

Furnishing the open unit ball of a complex Hilbert space with the Carathéodory-differential metric, we construct a model which plays a similar role as that of the Poincaré model for the hyperbolic geometry. In this note we study the question whether or not through a point in the model not lying on a given line there exists a unique perpendicular, and give a necessary and sufficient condition for the existence of a unique perpendicular. This enables us to divide a triangle into two right triangles. Many trigonometric identities in a general triangle are easy consequences of various identities which hold on a right triangle.


Sign in / Sign up

Export Citation Format

Share Document