Zeta Functions and the Log Behaviour of Combinatorial Sequences

2015 ◽  
Vol 58 (3) ◽  
pp. 637-651 ◽  
Author(s):  
William Y. C. Chen ◽  
Jeremy J. F. Guo ◽  
Larry X. W. Wang

AbstractIn this paper, we use the Riemann zeta functionζ(x) and the Bessel zeta functionζμ(x) to study the log behaviour of combinatorial sequences. We prove thatζ(x) is log-convex forx> 1. As a consequence, we deduce that the sequence {|B2n|/(2n)!}n≥ 1 is log-convex, whereBnis thenth Bernoulli number. We introduce the functionθ(x) = (2ζ(x)Γ(x + 1))1/x, whereΓ(x)is the gamma function, and we show that logθ(x) is strictly increasing forx≥ 6. This confirms a conjecture of Sun stating that the sequenceis strictly increasing. Amdeberhanet al. defined the numbersan(μ)= 22n+1(n+ 1)!(μ+ 1)nζμ(2n) and conjectured that the sequence{an(μ)}n≥1is log-convex forμ= 0 andμ= 1. By proving thatζμ(x)is log-convex forx >1 andμ >-1, we show that the sequence{an(≥)}n>1 is log-convex for anyμ >- 1. We introduce another functionθμ,(x)involvingζμ(x)and the gamma functionΓ(x)and we show that logθμ(x)is strictly increasing forx >8e(μ+ 2)2. This implies thatBased on Dobinski’s formula, we prove thatwhereBnis thenth Bell number. This confirms another conjecture of Sun. We also establish a connection between the increasing property ofand Holder’s inequality in probability theory.

2011 ◽  
Vol 2011 ◽  
pp. 1-21 ◽  
Author(s):  
Cabiria Andreian Cazacu ◽  
Dorin Ghisa

Branched covering Riemann surfaces(ℂ,f)are studied, wherefis the Euler Gamma function and the Riemann Zeta function. For both of them fundamental domains are found and the group of cover transformations is revealed. In order to find fundamental domains, preimages of the real axis are taken and a thorough study of their geometry is performed. The technique of simultaneous continuation, introduced by the authors in previous papers, is used for this purpose. Color visualization of the conformal mapping of the complex plane by these functions is used for a better understanding of the theory. A version of this paper containing colored images can be found in arXiv at Andrian Cazacu and Ghisa.


Author(s):  
Kwara Nantomah

In this paper, some convexity properties and some inequalities for the (p,k)-analogue of the Gamma function, Гp,k(x) are given. In particular, a (p,k)-analogue of the celebrated Bohr-Mollerup theorem is given. Furthermore, a (p,k)-analogue of the Riemann zeta function, ζp,k(x) is introduced and some associated inequalities are derived. The established results provide the (p,k)-generalizations of some known results concerning the classical Gamma function.


2013 ◽  
Vol 18 (3) ◽  
pp. 314-326
Author(s):  
Antanas Laurinčikas ◽  
Renata Macaitienė˙

In the paper, we prove a joint universality theorem for the Riemann zeta-function and a collection of Lerch zeta-functions with parameters algebraically independent over the field of rational numbers.


2021 ◽  
Vol 26 (1) ◽  
pp. 82-93
Author(s):  
Aidas Balčiūnas ◽  
Violeta Franckevič ◽  
Virginija Garbaliauskienė ◽  
Renata Macaitienė ◽  
Audronė Rimkevičienė

It is known that zeta-functions ζ(s,F) of normalized Hecke-eigen cusp forms F are universal in the Voronin sense, i.e., their shifts ζ(s + iτ,F), τ R, approximate a wide class of analytic functions. In the paper, under a weak form of the Montgomery pair correlation conjecture, it is proved that the shifts ζ(s+iγkh,F), where γ1 < γ2 < ... is a sequence of imaginary parts of non-trivial zeros of the Riemann zeta function and h > 0, also approximate a wide class of analytic functions.


2009 ◽  
Vol 61 (6) ◽  
pp. 1341-1356 ◽  
Author(s):  
Tanguy Rivoal

Abstract We construct bivariate polynomial approximations of the Lerch function that for certain specialisations of the variables and parameters turn out to be Hermite–Padé approximants either of the polylogarithms or ofHurwitz zeta functions. In the former case, we recover known results, while in the latter the results are new and generalise some recent works of Beukers and Prévost. Finally, we make a detailed comparison of our work with Beukers’. Such constructions are useful in the arithmetical study of the values of the Riemann zeta function at integer points and of the Kubota–Leopold p-adic zeta function.


2017 ◽  
Vol 13 (03) ◽  
pp. 705-716 ◽  
Author(s):  
Michael E. Hoffman

For [Formula: see text], let [Formula: see text] be the sum of all multiple zeta values with even arguments whose weight is [Formula: see text] and whose depth is [Formula: see text]. Of course [Formula: see text] is the value [Formula: see text] of the Riemann zeta function at [Formula: see text], and it is well known that [Formula: see text]. Recently Shen and Cai gave formulas for [Formula: see text] and [Formula: see text] in terms of [Formula: see text] and [Formula: see text]. We give two formulas for [Formula: see text], both valid for arbitrary [Formula: see text], one of which generalizes the Shen–Cai results; by comparing the two we obtain a Bernoulli-number identity. We also give explicit generating functions for the numbers [Formula: see text] and for the analogous numbers [Formula: see text] defined using multiple zeta-star values of even arguments.


2001 ◽  
Vol 28 (7) ◽  
pp. 403-411 ◽  
Author(s):  
Wu Yun-Fei

We evaluate sums of certain classes of new series involving the Riemann zeta function by using the theory of the double gamma function and a property of the gamma function. Relevant connections with various known results are also pointed out.


Sign in / Sign up

Export Citation Format

Share Document