scholarly journals On multiple zeta values of even arguments

2017 ◽  
Vol 13 (03) ◽  
pp. 705-716 ◽  
Author(s):  
Michael E. Hoffman

For [Formula: see text], let [Formula: see text] be the sum of all multiple zeta values with even arguments whose weight is [Formula: see text] and whose depth is [Formula: see text]. Of course [Formula: see text] is the value [Formula: see text] of the Riemann zeta function at [Formula: see text], and it is well known that [Formula: see text]. Recently Shen and Cai gave formulas for [Formula: see text] and [Formula: see text] in terms of [Formula: see text] and [Formula: see text]. We give two formulas for [Formula: see text], both valid for arbitrary [Formula: see text], one of which generalizes the Shen–Cai results; by comparing the two we obtain a Bernoulli-number identity. We also give explicit generating functions for the numbers [Formula: see text] and for the analogous numbers [Formula: see text] defined using multiple zeta-star values of even arguments.

2012 ◽  
Vol 92 (1) ◽  
pp. 71-98
Author(s):  
KH. HESSAMI PILEHROOD ◽  
T. HESSAMI PILEHROOD

AbstractIn this paper we present new explicit simultaneous rational approximations which converge subexponentially to the values of the Bell polynomials at the points where m=1,2,…,a, a∈ℕ, γ is Euler’s constant and ζ is the Riemann zeta function.


2005 ◽  
Vol 2005 (21) ◽  
pp. 3453-3458 ◽  
Author(s):  
David M. Bradley

The double zeta function was first studied by Euler in response to a letter from Goldbach in 1742. One of Euler's results for this function is a decomposition formula, which expresses the product of two values of the Riemann zeta function as a finite sum of double zeta values involving binomial coefficients. Here, we establish aq-analog of Euler's decomposition formula. More specifically, we show that Euler's decomposition formula can be extended to what might be referred to as a “doubleq-zeta function” in such a way that Euler's formula is recovered in the limit asqtends to 1.


2021 ◽  
Vol 55 (2) ◽  
pp. 115-123
Author(s):  
R. Frontczak ◽  
T. Goy

The purpose of this paper is to present closed forms for various types of infinite seriesinvolving Fibonacci (Lucas) numbers and the Riemann zeta function at integer arguments.To prove our results, we will apply some conventional arguments and combine the Binet formulasfor these sequences with generating functions involving the Riemann zeta function and some known series evaluations.Among the results derived in this paper, we will establish that $\displaystyle\sum_{k=1}^\infty (\zeta(2k+1)-1) F_{2k} = \frac{1}{2},\quad\sum_{k=1}^\infty (\zeta(2k+1)-1) \frac{L_{2k+1}}{2k+1} = 1-\gamma,$ where $\gamma$ is the familiar Euler-Mascheroni constant.


10.37236/759 ◽  
2008 ◽  
Vol 15 (1) ◽  
Author(s):  
Kh. Hessami Pilehrood ◽  
T. Hessami Pilehrood

Using WZ-pairs we present simpler proofs of Koecher, Leshchiner and Bailey-Borwein-Bradley's identities for generating functions of the sequences $\{\zeta(2n+2)\}_{n\ge 0}$ and $\{\zeta(2n+3)\}_{n\ge 0}.$ By the same method, we give several new representations for these generating functions yielding faster convergent series for values of the Riemann zeta function.


2019 ◽  
Vol 155 (5) ◽  
pp. 938-952 ◽  
Author(s):  
Stéphane Fischler ◽  
Johannes Sprang ◽  
Wadim Zudilin

Building upon ideas of the second and third authors, we prove that at least$2^{(1-\unicode[STIX]{x1D700})(\log s)/(\text{log}\log s)}$values of the Riemann zeta function at odd integers between 3 and$s$are irrational, where$\unicode[STIX]{x1D700}$is any positive real number and$s$is large enough in terms of$\unicode[STIX]{x1D700}$. This lower bound is asymptotically larger than any power of$\log s$; it improves on the bound$(1-\unicode[STIX]{x1D700})(\log s)/(1+\log 2)$that follows from the Ball–Rivoal theorem. The proof is based on construction of several linear forms in odd zeta values with related coefficients.


2007 ◽  
Vol 142 (3) ◽  
pp. 395-405 ◽  
Author(s):  
HIROFUMI TSUMURA

AbstractIn this paper, we give certain analytic functional relations between the Mordell–Tornheim double zeta functions and the Riemann zeta function. These can be regarded as continuous generalizations of the known discrete relations between the Mordell–Tornheim double zeta values and the Riemann zeta values at positive integers discovered in the 1950's.


2015 ◽  
Vol 58 (3) ◽  
pp. 637-651 ◽  
Author(s):  
William Y. C. Chen ◽  
Jeremy J. F. Guo ◽  
Larry X. W. Wang

AbstractIn this paper, we use the Riemann zeta functionζ(x) and the Bessel zeta functionζμ(x) to study the log behaviour of combinatorial sequences. We prove thatζ(x) is log-convex forx> 1. As a consequence, we deduce that the sequence {|B2n|/(2n)!}n≥ 1 is log-convex, whereBnis thenth Bernoulli number. We introduce the functionθ(x) = (2ζ(x)Γ(x + 1))1/x, whereΓ(x)is the gamma function, and we show that logθ(x) is strictly increasing forx≥ 6. This confirms a conjecture of Sun stating that the sequenceis strictly increasing. Amdeberhanet al. defined the numbersan(μ)= 22n+1(n+ 1)!(μ+ 1)nζμ(2n) and conjectured that the sequence{an(μ)}n≥1is log-convex forμ= 0 andμ= 1. By proving thatζμ(x)is log-convex forx >1 andμ >-1, we show that the sequence{an(≥)}n>1 is log-convex for anyμ >- 1. We introduce another functionθμ,(x)involvingζμ(x)and the gamma functionΓ(x)and we show that logθμ(x)is strictly increasing forx >8e(μ+ 2)2. This implies thatBased on Dobinski’s formula, we prove thatwhereBnis thenth Bell number. This confirms another conjecture of Sun. We also establish a connection between the increasing property ofand Holder’s inequality in probability theory.


Sign in / Sign up

Export Citation Format

Share Document