integer points
Recently Published Documents


TOTAL DOCUMENTS

241
(FIVE YEARS 39)

H-INDEX

16
(FIVE YEARS 1)

Author(s):  
Gennadiy Averkov ◽  
Christopher Hojny ◽  
Matthias Schymura

AbstractThe relaxation complexity $${{\,\mathrm{rc}\,}}(X)$$ rc ( X ) of the set of integer points X contained in a polyhedron is the smallest number of facets of any polyhedron P such that the integer points in P coincide with X. It is a useful tool to investigate the existence of compact linear descriptions of X. In this article, we derive tight and computable upper bounds on $${{\,\mathrm{rc}\,}}_\mathbb {Q}(X)$$ rc Q ( X ) , a variant of $${{\,\mathrm{rc}\,}}(X)$$ rc ( X ) in which the polyhedra P are required to be rational, and we show that $${{\,\mathrm{rc}\,}}(X)$$ rc ( X ) can be computed in polynomial time if X is 2-dimensional. Further, we investigate computable lower bounds on $${{\,\mathrm{rc}\,}}(X)$$ rc ( X ) with the particular focus on the existence of a finite set $$Y \subseteq \mathbb {Z}^d$$ Y ⊆ Z d such that separating X and $$Y \setminus X$$ Y \ X allows us to deduce $${{\,\mathrm{rc}\,}}(X) \ge k$$ rc ( X ) ≥ k . In particular, we show for some choices of X that no such finite set Y exists to certify the value of $${{\,\mathrm{rc}\,}}(X)$$ rc ( X ) , providing a negative answer to a question by Weltge (2015). We also obtain an explicit formula for $${{\,\mathrm{rc}\,}}(X)$$ rc ( X ) for specific classes of sets X and present the first practically applicable approach to compute $${{\,\mathrm{rc}\,}}(X)$$ rc ( X ) for sets X that admit a finite certificate.


Author(s):  
V. GENZ ◽  
G. KOSHEVOY ◽  
B. SCHUMANN

AbstractWe give a formula for the crystal structure on the integer points of the string polytopes and the *-crystal structure on the integer points of the string cones of type A for arbitrary reduced words. As a byproduct, we obtain defining inequalities for Nakashima–Zelevinsky string polytopes. Furthermore, we give an explicit description of the Kashiwara *-involution on string data for a special choice of reduced word.


Author(s):  
Cunjing Ge ◽  
Armin Biere

Counting integer solutions of linear constraints has found interesting applications in various fields. It is equivalent to the problem of counting integer points inside a polytope. However, state-of-the-art algorithms for this problem become too slow for even a modest number of variables. In this paper, we propose new decomposition techniques which target both the elimination of variables as well as inequalities using structural properties of counting problems. Experiments on extensive benchmarks show that our algorithm improves the performance of state-of-the-art counting algorithms, while the overhead is usually negligible compared to the running time of integer counting.


2021 ◽  
Vol 68 (4) ◽  
pp. 1-35
Author(s):  
Albert Atserias ◽  
Anuj Dawar ◽  
Joanna Ochremiak

We consider families of symmetric linear programs (LPs) that decide a property of graphs (or other relational structures) in the sense that, for each size of graph, there is an LP defining a polyhedral lift that separates the integer points corresponding to graphs with the property from those corresponding to graphs without the property. We show that this is equivalent, with at most polynomial blow-up in size, to families of symmetric Boolean circuits with threshold gates. In particular, when we consider polynomial-size LPs, the model is equivalent to definability in a non-uniform version of fixed-point logic with counting (FPC). Known upper and lower bounds for FPC apply to the non-uniform version. In particular, this implies that the class of graphs with perfect matchings has polynomial-size symmetric LPs, while we obtain an exponential lower bound for symmetric LPs for the class of Hamiltonian graphs. We compare and contrast this with previous results (Yannakakis 1991), showing that any symmetric LPs for the matching and TSP polytopes have exponential size. As an application, we establish that for random, uniformly distributed graphs, polynomial-size symmetric LPs are as powerful as general Boolean circuits. We illustrate the effect of this on the well-studied planted-clique problem.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jackson Autry ◽  
Abigail Ezell ◽  
Tara Gomes ◽  
Christopher O’Neill ◽  
Christopher Preuss ◽  
...  

Abstract Several recent papers have examined a rational polyhedron Pm whose integer points are in bijection with the numerical semigroups (cofinite, additively closed subsets of the non-negative integers) containing m. A combinatorial description of the faces of Pm was recently introduced, one that can be obtained from the divisibility posets of the numerical semigroups a given face contains. In this paper, we study the faces of Pm containing arithmetical numerical semigroups and those containing certain glued numerical semigroups, as an initial step towards better understanding the full face structure of Pm . In most cases, such faces only contain semigroups from these families, yielding a tight connection to the geometry of Pm .


2021 ◽  
Vol 9 (2) ◽  
pp. 453-458
Author(s):  
Yuly Shipilevsky

This is a pioneering work, introducing a novel class of optimization of objective functions over subsets of primeonly integer points. We show a rich variety of Prime Optimization and mixed problems.


2021 ◽  
pp. 2150038
Author(s):  
Driss Essouabri ◽  
Kohji Matsumoto

We study rather general multiple zeta functions whose denominators are given by polynomials. The main aim is to prove explicit formulas for the values of those multiple zeta functions at non-positive integer points. We first treat the case when the polynomials are power sums, and observe that some “trivial zeros” exist. We also prove that special values are sometimes transcendental. Then we proceed to the general case, and show an explicit expression of special values at non-positive integer points which involves certain period integrals. We give examples of transcendental values of those special values or period integrals. We also mention certain relations among Bernoulli numbers which can be deduced from our explicit formulas. Our proof of explicit formulas are based on the Euler–Maclaurin summation formula, Mahler’s theorem, and a Raabe-type lemma due to Friedman and Pereira.


Sign in / Sign up

Export Citation Format

Share Document