scholarly journals On sectoriality of degenerate elliptic operators

Author(s):  
Tan Duc Do

Abstract Let $c_{kl} \in W^{1,\infty }(\Omega , \mathbb{C})$ for all $k,l \in \{1, \ldots , d\};$ and $\Omega \subset \mathbb{R}^{d}$ be open with uniformly $C^{2}$ boundary. We consider the divergence form operator $A_p = - \sum \nolimits _{k,l=1}^{d} \partial _l (c_{kl} \partial _k)$ in $L_p(\Omega )$ when the coefficient matrix satisfies $(C(x) \xi , \xi ) \in \Sigma _\theta$ for all $x \in \Omega$ and $\xi \in \mathbb{C}^{d}$ , where $\Sigma _\theta$ be the sector with vertex 0 and semi-angle $\theta$ in the complex plane. We show that a sectorial estimate holds for $A_p$ for all $p$ in a suitable range. We then apply these estimates to prove that the closure of $-A_p$ generates a holomorphic semigroup under further assumptions on the coefficients. The contractivity and consistency properties of these holomorphic semigroups are also considered.

2020 ◽  
Vol 13 (1) ◽  
pp. 75-113 ◽  
Author(s):  
Li Chen ◽  
José María Martell ◽  
Cruz Prisuelos-Arribas

AbstractThe aim of the present paper is to study the boundedness of different conical square functions that arise naturally from second-order divergence form degenerate elliptic operators. More precisely, let {L_{w}=-w^{-1}\mathop{\rm div}(wA\nabla)}, where {w\in A_{2}} and A is an {n\times n} bounded, complex-valued, uniformly elliptic matrix. Cruz-Uribe and Rios solved the {L^{2}(w)}-Kato square root problem obtaining that {\sqrt{L_{w}}} is equivalent to the gradient on {L^{2}(w)}. The same authors in collaboration with the second named author of this paper studied the {L^{p}(w)}-boundedness of operators that are naturally associated with {L_{w}}, such as the functional calculus, Riesz transforms, and vertical square functions. The theory developed admitted also weighted estimates (i.e., estimates in {L^{p}(v\,dw)} for {v\in A_{\infty}(w)}), and in particular a class of “degeneracy” weights w was found in such a way that the classical {L^{2}}-Kato problem can be solved. In this paper, continuing this line of research, and also that originated in some recent results by the second and third named authors of the current paper, we study the boundedness on {L^{p}(w)} and on {L^{p}(v\,dw)}, with {v\in A_{\infty}(w)}, of the conical square functions that one can construct using the heat or Poisson semigroup associated with {L_{w}}. As a consequence of our methods, we find a class of degeneracy weights w for which {L^{2}}-estimates for these conical square functions hold. This opens the door to the study of weighted and unweighted Hardy spaces and of boundary value problems associated with {L_{w}}.


Author(s):  
Charles L. Epstein ◽  
Rafe Mazzeo

This book provides the mathematical foundations for the analysis of a class of degenerate elliptic operators defined on manifolds with corners, which arise in a variety of applications such as population genetics, mathematical finance, and economics. The results discussed in this book prove the uniqueness of the solution to the martingale problem and therefore the existence of the associated Markov process. The book uses an “integral kernel method” to develop mathematical foundations for the study of such degenerate elliptic operators and the stochastic processes they define. The precise nature of the degeneracies of the principal symbol for these operators leads to solutions of the parabolic and elliptic problems that display novel regularity properties. Dually, the adjoint operator allows for rather dramatic singularities, such as measures supported on high codimensional strata of the boundary. The book establishes the uniqueness, existence, and sharp regularity properties for solutions to the homogeneous and inhomogeneous heat equations, as well as a complete analysis of the resolvent operator acting on Hölder spaces. It shows that the semigroups defined by these operators have holomorphic extensions to the right half plane. The book also demonstrates precise asymptotic results for the long-time behavior of solutions to both the forward and backward Kolmogorov equations.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Pengcheng Niu ◽  
Kelei Zhang

Let{X1,X2,…,Xm}be the basis of space of horizontal vector fields in a Carnot groupG=(Rn;∘) (m<n). We prove high order Fefferman-Phong type inequalities inG. As applications, we derive a prioriLp(G)estimates for the nondivergence degenerate elliptic operatorsL=-∑i,j=1maij(x)XiXj+V(x)withVMOcoefficients and a potentialVbelonging to an appropriate Stummel type class introduced in this paper. Some of our results are also new even for the usual Euclidean space.


2011 ◽  
Vol 284 (5-6) ◽  
pp. 587-607 ◽  
Author(s):  
Francesco Altomare ◽  
Mirella Cappelletti Montano ◽  
Sabrina Diomede

Sign in / Sign up

Export Citation Format

Share Document