scholarly journals Approximate point spectrum and commuting compact perturbations

1986 ◽  
Vol 28 (2) ◽  
pp. 193-198 ◽  
Author(s):  
Vladimir Rakočević

Let X be an infinite-dimensional complex Banach space and denote the set of bounded (compact) linear operators on X by B (X) (K(X)). Let σ(A) and σa(A) denote, respectively, the spectrum and approximate point spectrum of an element A of B(X). Setσem(A)and σeb(A) are respectively Schechter's and Browder's essential spectrum of A ([16], [9]). σea (A) is a non-empty compact subset of the set of complex numbers ℂ and it is called the essential approximate point spectrum of A ([13], [14]). In this note we characterize σab(A) and show that if f is a function analytic in a neighborhood of σ(A), then σab(f(A)) = f(σab(A)). The relation between σa(A) and σeb(A), that is exhibited in this paper, resembles the relation between the σ(A) and the σeb(A), and it is reasonable to call σab(A) Browder's essential approximate point spectrum of A.


1986 ◽  
Vol 28 (1) ◽  
pp. 69-72 ◽  
Author(s):  
Muneo Chō

Let X be a complex Banach space. We denote by B(X) the algebra of all bounded linear operators on X. Let = (T1, …, Tn) be a commuting n-tuple of operators on X. And let στ() and σ″() by Taylor's joint spectrum and the doubly commutant spectrum of , respectively. We refer the reader to Taylor [8] for the definition of στ() and σ″(), A point z = (z1,…, zn) of ℂn is in the joint approximate point spectrum σπ() of if there exists a sequence {xk} of unit vectors in X such that∥(Ti – zi)xk∥→0 as k → ∞ for i = 1, 2,…, n.



1978 ◽  
Vol 30 (5) ◽  
pp. 1045-1069 ◽  
Author(s):  
I. Gohberg ◽  
P. Lancaster ◽  
L. Rodman

Let be a complex Banach space and the algebra of bounded linear operators on . In this paper we study functions from the complex numbers to of the form



1993 ◽  
Vol 36 (2) ◽  
pp. 197-209 ◽  
Author(s):  
Vladimir Rakočević

Let X be an infinite-dimensional complex Banach space and denote the set of bounded (compact) linear operators on X by B(X) (K(X)). Let N(A) and R(A) denote, respectively, the null space and the range space of an element A of B(X). Set R(A∞)=∩nR(An) and k(A)=dim N(A)/(N(A)∩R(A∞)). Let σg(A) = ℂ\{λ∈ℂ:R(A−λ) is closed and k(A−λ)=0} denote the generalized (regular) spectrum of A. In this paper we study the subset σgb(A) of σg(A) defined by σgb(A) = ℂ\{λ∈ℂ:R(A−λ) is closed and k(A−λ)<∞}. Among other things, we prove that if f is a function analytic in a neighborhood of σ(A), then σgb(f(A)) = f(σgb(A)).



2014 ◽  
Vol 57 (3) ◽  
pp. 665-680
Author(s):  
H. S. MUSTAFAYEV

AbstractLet A be an invertible operator on a complex Banach space X. For a given α ≥ 0, we define the class $\mathcal{D}$Aα(ℤ) (resp. $\mathcal{D}$Aα (ℤ+)) of all bounded linear operators T on X for which there exists a constant CT>0, such that $ \begin{equation*} \Vert A^{n}TA^{-n}\Vert \leq C_{T}\left( 1+\left\vert n\right\vert \right) ^{\alpha }, \end{equation*} $ for all n ∈ ℤ (resp. n∈ ℤ+). We present a complete description of the class $\mathcal{D}$Aα (ℤ) in the case when the spectrum of A is real or is a singleton. If T ∈ $\mathcal{D}$A(ℤ) (=$\mathcal{D}$A0(ℤ)), some estimates for the norm of AT-TA are obtained. Some results for the class $\mathcal{D}$Aα (ℤ+) are also given.



1968 ◽  
Vol 8 (1) ◽  
pp. 119-127 ◽  
Author(s):  
S. J. Bernau

Recall that the spectrum, σ(T), of a linear operator T in a complex Banach space is the set of complex numbers λ such that T—λI does not have a densely defined bounded inverse. It is known [7, § 5.1] that σ(T) is a closed subset of the complex plane C. If T is not bounded, σ(T) may be empty or the whole of C. If σ(T) ≠ C and T is closed the spectral mapping theorem, is valid for complex polynomials p(z) [7, §5.7]. Also, if T is closed and λ ∉ σ(T), (T–λI)−1 is everywhere defined.



1984 ◽  
Vol 96 (3) ◽  
pp. 483-493 ◽  
Author(s):  
Kirsti Mattila

Let X be a complex Banach space. We denote by X* the dual space of X and by B(X) the space of all bounded linear operators on X. The (spatial) numerical range of an operator TεB(X) is defined as the setIf V(T) ⊂ ℝ, then T is called hermitian. More about numerical ranges may be found in [8] and [9].



1970 ◽  
Vol 13 (4) ◽  
pp. 469-473
Author(s):  
C-S Lin

Let T—c be a Fredholm operator, where T is a bounded linear operator on a complex Banach space and c is a scalar, the set of all such scalars is called the Φ-set of T [2] and was studied by many authors. In this connection, the purpose of the present paper is to investigate some classes Φ(V) of all such operators for any subset V of the complex plane.Let X be a Banach space over the field C of complex numbers with dim Z = ∞, unless otherwise stated, B(X) the Banach algebra of all bounded linear operators and K(X) the closed two-sided ideal of all compact operators on X.



1997 ◽  
Vol 39 (2) ◽  
pp. 217-220 ◽  
Author(s):  
Muneo Chō ◽  
Masuo Itoh ◽  
Satoru Ōshiro

Let ℋ be a complex Hilbert space and B(ℋ) the algebra of all bounded linear operators on ℋ. Let ℋ(ℋ) be the algebra of all compact operators of B(ℋ). For an operator T ε B(ℋ), let σ(T), σp(T), σπ(T) and πoo(T) denote the spectrum, the point spectrum, the approximate point spectrum and the set of all isolated eigenvalues of finite multiplicity of T, respectively. We denote the kernel and the range of an operator T by ker(T) and R(T), respectively. For a subset of ℋ, the norm closure of is denoted by . The Weyl spectrum ω(T) of T ε B(ℋ) is defined as the set



2020 ◽  
Vol 39 (6) ◽  
pp. 1435-1456
Author(s):  
Elvis Aponte ◽  
Jhixon Macías ◽  
José Sanabria ◽  
José Soto

We carry out characterizations with techniques provided by the local spectral theory of bounded linear operators T ∈ L(X), X infinite dimensional complex Banach space, which verify property (VΠ) introduced by Sanabria et al. (Open Math. 16(1) (2018), 289-297). We also carry out the study for polaroid operators and Drazin invertible operators that verify the property mentioned above.



Sign in / Sign up

Export Citation Format

Share Document