scholarly journals Weyl's theorem holds for p-hyponormal operators

1997 ◽  
Vol 39 (2) ◽  
pp. 217-220 ◽  
Author(s):  
Muneo Chō ◽  
Masuo Itoh ◽  
Satoru Ōshiro

Let ℋ be a complex Hilbert space and B(ℋ) the algebra of all bounded linear operators on ℋ. Let ℋ(ℋ) be the algebra of all compact operators of B(ℋ). For an operator T ε B(ℋ), let σ(T), σp(T), σπ(T) and πoo(T) denote the spectrum, the point spectrum, the approximate point spectrum and the set of all isolated eigenvalues of finite multiplicity of T, respectively. We denote the kernel and the range of an operator T by ker(T) and R(T), respectively. For a subset of ℋ, the norm closure of is denoted by . The Weyl spectrum ω(T) of T ε B(ℋ) is defined as the set

2015 ◽  
Vol 17 (05) ◽  
pp. 1450042
Author(s):  
Weijuan Shi ◽  
Xiaohong Cao

Let H be an infinite-dimensional separable complex Hilbert space and B(H) the algebra of all bounded linear operators on H. T ∈ B(H) satisfies Weyl's theorem if σ(T)\σw(T) = π00(T), where σ(T) and σw(T) denote the spectrum and the Weyl spectrum of T, respectively, π00(T) = {λ ∈ iso σ(T) : 0 < dim N(T - λI) < ∞}. T ∈ B(H) is said to have the stability of Weyl's theorem if T + K satisfies Weyl's theorem for all compact operator K ∈ B(H). In this paper, we characterize the operator T on H satisfying the stability of Weyl's theorem holds for T2.


1985 ◽  
Vol 26 (1) ◽  
pp. 47-50 ◽  
Author(s):  
Muneo Chō ◽  
A. T. Dash

Let H be a complex Hilbert space. For any operator (bounded linear transformation) T on H, we denote the spectrum of T by σ(T). Let T = (T1, …, Tn) be an n-tuple of commuting operators on H. Let Sp(T) be the Taylor joint spectrum of T. We refer the reader to [8] for the definition of Sp(T). A point v = (v1, …, vn) of ℂn is in the joint approximate point spectrum σπ(T) of T if there exists a sequence {xk} of unit vectors in H such that.A point v = (v1, …, vn) of ℂn is in the joint approximate compression spectrum σs(T) of T if there exists a sequence {xk} of unit vectors in H such thatA point v=(v1, …, vn) of ℂn is in the joint point spectrum σp(T) of T if there exists a non-zero vector x in H such that (Ti-vi)x = 0 for all i, 1 ≤ j ≤ n.


2004 ◽  
Vol 76 (2) ◽  
pp. 291-302 ◽  
Author(s):  
M. Berkani ◽  
A. Arroud

AbstractLet T be a bounded linear operator acting on a Hilbert space H. The B-Weyl spectrum of T is the set σBW(T) of all λ ∈ Сsuch that T − λI is not a B-Fredholm operator of index 0. Let E(T) be the set of all isolated eigenvalues of T. The aim of this paper is to show that if T is a hyponormal operator, then T satisfies generalized Weyl's theorem σBW(T) = σ(T)/E(T), and the B-Weyl spectrum σBW(T) of T satisfies the spectral mapping theorem. We also consider commuting finite rank perturbations of operators satisfying generalized Weyl's theorem.


2006 ◽  
Vol 13 (2) ◽  
pp. 307-313
Author(s):  
Salah Mecheri

Abstract Let 𝐴 be a bounded linear operator acting on a Hilbert space 𝐻. The 𝐵-Weyl spectrum of 𝐴 is the set σ 𝐵𝑤(𝐴) of all ⋋ ∈ ℂ such that 𝐴 – ⋋𝐼 is not a 𝐵-Fredholm operator of index 0. Let 𝐸(𝐴) be the set of all isolated eigenvalues of 𝐴. Recently, in [Berkani and Arroud, J. Aust. Math. Soc. 76: 291–302, 2004] the author showed that if 𝐴 is hyponormal, then 𝐴 satisfies the generalized Weyl's theorem σ 𝐵𝑤(𝐴) = σ(𝐴) \ 𝐸(𝐴), and the 𝐵-Weyl spectrum σ 𝐵𝑤(𝐴) of 𝐴 satisfies the spectral mapping theorem. Lee [Han, Proc. Amer. Math. Soc. 128: 2291–2296, 2000] showed that Weyl's theorem holds for algebraically hyponormal operators. In this paper the above results are generalized to an algebraically (𝑝, 𝑘)-quasihyponormal operator which includes an algebraically hyponormal operator.


1989 ◽  
Vol 31 (2) ◽  
pp. 165-168
Author(s):  
B. P. Duggal

We consider operators, i.e. bounded linear transformations, on an infinite dimensional separable complex Hilbert space H into itself. The operator A is said to be dominant if for each complex number λ there exists a number Mλ(≥l) such that ∥(A – λ)*x∥ ≤ Mλ∥A – λ)x∥ for each x∈H. If there exists a number M≥Mλ for all λ, then the dominant operator A is said to be M-hyponormal. The class of dominant (and JW-hyponormal) operators was introduced by J. G. Stampfli during the seventies, and has since been considered in a number of papers, amongst then [7], [11]. It is clear that a 1-hyponormal is hyponormal. The operator A*A is said to be quasi-normal if Acommutes with A*A, and we say that A is subnormal if A has a normal extension. It is known that the classes consisting of these operators satisfy the following strict inclusion relation:


1986 ◽  
Vol 28 (1) ◽  
pp. 69-72 ◽  
Author(s):  
Muneo Chō

Let X be a complex Banach space. We denote by B(X) the algebra of all bounded linear operators on X. Let = (T1, …, Tn) be a commuting n-tuple of operators on X. And let στ() and σ″() by Taylor's joint spectrum and the doubly commutant spectrum of , respectively. We refer the reader to Taylor [8] for the definition of στ() and σ″(), A point z = (z1,…, zn) of ℂn is in the joint approximate point spectrum σπ() of if there exists a sequence {xk} of unit vectors in X such that∥(Ti – zi)xk∥→0 as k → ∞ for i = 1, 2,…, n.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Qingping Zeng ◽  
Huaijie Zhong

An operatorT∈ℬ(X)defined on a Banach spaceXsatisfies property(gb)if the complement in the approximate point spectrumσa(T)of the upper semi-B-Weyl spectrumσSBF+-(T)coincides with the setΠ(T)of all poles of the resolvent ofT. In this paper, we continue to study property(gb)and the stability of it, for a bounded linear operatorTacting on a Banach space, under perturbations by nilpotent operators, by finite rank operators, and by quasinilpotent operators commuting withT. Two counterexamples show that property(gb)in general is not preserved under commuting quasi-nilpotent perturbations or commuting finite rank perturbations.


1986 ◽  
Vol 28 (2) ◽  
pp. 193-198 ◽  
Author(s):  
Vladimir Rakočević

Let X be an infinite-dimensional complex Banach space and denote the set of bounded (compact) linear operators on X by B (X) (K(X)). Let σ(A) and σa(A) denote, respectively, the spectrum and approximate point spectrum of an element A of B(X). Setσem(A)and σeb(A) are respectively Schechter's and Browder's essential spectrum of A ([16], [9]). σea (A) is a non-empty compact subset of the set of complex numbers ℂ and it is called the essential approximate point spectrum of A ([13], [14]). In this note we characterize σab(A) and show that if f is a function analytic in a neighborhood of σ(A), then σab(f(A)) = f(σab(A)). The relation between σa(A) and σeb(A), that is exhibited in this paper, resembles the relation between the σ(A) and the σeb(A), and it is reasonable to call σab(A) Browder's essential approximate point spectrum of A.


1984 ◽  
Vol 96 (3) ◽  
pp. 483-493 ◽  
Author(s):  
Kirsti Mattila

Let X be a complex Banach space. We denote by X* the dual space of X and by B(X) the space of all bounded linear operators on X. The (spatial) numerical range of an operator TεB(X) is defined as the setIf V(T) ⊂ ℝ, then T is called hermitian. More about numerical ranges may be found in [8] and [9].


1982 ◽  
Vol 23 (1) ◽  
pp. 91-95 ◽  
Author(s):  
Ernst Albrecht

Let H be a complex Hilbert space and denote by B(H) the Banach algebra of all bounded linear operators on H. In [5; 6] J. Ph. Labrousse proved that every operator S∈B(H) which is spectral in the sense of N. Dunford (see [3]) is similar to a T∈B(H) with the following propertyConversely, he showed that given an operator S∈B(H) such that its essential spectrum (in the sense of [5; 6]) consists of at most one point and such that S is similar to a T∈B(H) with the property (1), then S is a spectral operator. This led him to the conjecture that an operator S∈B(H) is spectral if and only if it is similar to a T∈B(H) with property (1). The purpose of this note is to prove this conjecture in the case of operators which are decomposable in the sense of C. Foias (see [2]).


Sign in / Sign up

Export Citation Format

Share Document