scholarly journals Supersolvable M*-groups

1988 ◽  
Vol 30 (1) ◽  
pp. 31-40 ◽  
Author(s):  
Coy L. May

A compact bordered Klein surface of genus g ≥ 2 has maximal symmetry [4] if its automorphism group is of order 12(g − 1), the largest possible. An M*-group [8] acts on a bordered surface with maximal symmetry. The first important result about these groups was that they must have a certain partial presentation [8, p. 5]. However, research has tended to focus more on the surfaces with maximal symmetry than on the M*-groups, and results about these groups typically deal with existence.

1991 ◽  
Vol 33 (1) ◽  
pp. 61-71 ◽  
Author(s):  
Coy L. May

A compact bordered Klein surface X of algebraic genus g ≥ 2 has maximal symmetry [6] if its automorphism group A(X) is of order 12(g — 1), the largest possible. The bordered surfaces with maximal symmetry are clearly of special interest and have been studied in several recent papers ([6] and [9] among others).


1986 ◽  
Vol 38 (5) ◽  
pp. 1094-1109 ◽  
Author(s):  
Coy L. May

A compact bordered Klein surface of (algebraic) genus g ≦ 2 is said to have maximal symmetry [5] if its automorphism group is of order 12(g – 1), the largest possible. An M*-group acts as the automorphism group of a bordered surface with maximal symmetry. M*-groups were first studied in [6], and additional results about these groups are in [5, 7, 8].Here we construct a new, interesting family of M*-groups. Each group G in the family is an extension of a cyclic group by the automorphism group of a torus T with holes that has maximal symmetry. Furthermore, G acts on a bordered Klein surface X that is a fully wound covering [7] of T, that is, an especially nice covering in which X has the same number of boundary components as T. The construction we use for the new family of M*-groups is a standard one that employs group automorphisms to define extensions of groups.


2014 ◽  
Vol 14 (03) ◽  
pp. 1550040
Author(s):  
Coy L. May

Let G be a finite group. The real genusρ(G) is the minimum algebraic genus of any compact bordered Klein surface on which G acts. We classify the large groups of real genus p + 1, that is, the groups such that |G| ≥ 3(g - 1), where the genus action of G is on a bordered surface of genus g = p + 1. The group G must belong to one of four infinite families. In addition, we determine the order of the largest automorphism group of a surface of genus g for all g such that g = p + 1, where p is a prime.


1985 ◽  
Vol 26 (1) ◽  
pp. 31-34 ◽  
Author(s):  
David Singerman

Let X be a bordered Klein surface, by which we mean a Klein surface with non-empty boundary. X is characterized topologically by its orientability, the number k of its boundary components and the genus p of the closed surface obtained by filling in all the holes. The algebraic genus g of X is defined by.If g≥2 it is known that if G is a group of automorphisms of X then |G|≤12(g-l) and that the upper bound is attained for infinitely many values of g ([4], [5]). A bordered Klein surface for which this upper bound is attained is said to have maximal symmetry. A group of 12(g-l) automorphisms of a bordered Klein surface of algebraic genus g is called an M*-group and it is known that a finite group G is an M*-group if and only if it is generated by 3 non-trivial elements T1, T2, T3 which obey the relations([4]).


1994 ◽  
Vol 36 (3) ◽  
pp. 313-330 ◽  
Author(s):  
E. Bujalance ◽  
A. F. Costa ◽  
G. Gromadzki ◽  
D. Singerman

In this paper we consider complex doubles of compact Klein surfaces that have large automorphism groups. It is known that a bordered Klein surface of algebraic genus g > 2 has at most 12(g − 1) automorphisms. Surfaces for which this bound is sharp are said to have maximal symmetry. The complex double of such a surface X is a compact Riemann surface X+ of genus g and it is easy to see that if G is the group of automorphisms of X then C2 × G is a group of automorphisms of X+. A natural question is whether X+ can have a group that strictly contains C2 × G. In [8] C. L. May claimed the following interesting result: there is a unique Klein surface X with maximal symmetry for which Aut X+ properly contains C2 × Aut X (where Aut X+ denotes the group of conformal and anticonformal automorphisms of X+).


2002 ◽  
Vol 31 (4) ◽  
pp. 215-227
Author(s):  
J. A. Bujalance ◽  
B. Estrada

LetXbe a nonorientable Klein surface (KS in short), that is a compact nonorientable surface with a dianalytic structure defined on it. A Klein surfaceXis said to beq-hyperellipticif and only if there exists an involutionΦonX(a dianalytic homeomorphism of order two) such that the quotientX/〈Φ〉has algebraic genusq.q-hyperelliptic nonorientable KSs without boundary (nonorientable Riemann surfaces) were characterized by means of non-Euclidean crystallographic groups. In this paper, using that characterization, we determine bounds for the order of the automorphism group of a nonorientableq-hyperelliptic Klein surfaceXsuch thatX/〈Φ〉has no boundary and prove that the bounds are attained. Besides, we obtain the dimension of the Teichmüller space associated to this type of surfaces.


2019 ◽  
Vol 31 (1) ◽  
pp. 265-273
Author(s):  
Fabio Podestà ◽  
Alberto Raffero

Abstract We prove that the automorphism group of a compact 6-manifold M endowed with a symplectic half-flat {\mathrm{SU}(3)} -structure has Abelian Lie algebra with dimension bounded by {\min\{5,b_{1}(M)\}} . Moreover, we study the properties of the automorphism group action and we discuss relevant examples. In particular, we provide new complete examples on {T\mathbb{S}^{3}} which are invariant under a cohomogeneity one action of {\mathrm{SO}(4)} .


Author(s):  
HUA HAN ◽  
HONG CI LIAO ◽  
ZAI PING LU
Keyword(s):  

Abstract A graph is edge-primitive if its automorphism group acts primitively on the edge set, and $2$ -arc-transitive if its automorphism group acts transitively on the set of $2$ -arcs. In this paper, we present a classification for those edge-primitive graphs that are $2$ -arc-transitive and have soluble edge-stabilizers.


Sign in / Sign up

Export Citation Format

Share Document