scholarly journals A Note on Hobby’s Theorem of Finite Groups

Algebra ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-3
Author(s):  
Qingjun Kong

It is well known that the Frattini subgroups of any finite groups are nilpotent. If a finite group is not nilpotent, it is not the Frattini subgroup of a finite group. In this paper, we mainly discuss what kind of finite nilpotent groups cannot be the Frattini subgroup of some finite groups and give some results. Moreover, we generalize Hobby’s Theorem.

1994 ◽  
Vol 36 (2) ◽  
pp. 241-247 ◽  
Author(s):  
A. Ballester-Bolinches ◽  
M. D. Pérez-Ramos

Throughout the paper we consider only finite groups.J. C. Beidleman and H. Smith [3] have proposed the following question: “If G is a group and Ha subnormal subgroup of G containing Φ(G), the Frattini subgroup of G, such that H/Φ(G)is supersoluble, is H necessarily supersoluble? “In this paper, we give not only an affirmative answer to this question but also we see that the above result still holds if supersoluble is replaced by any saturated formation containing the class of all nilpotent groups.


2019 ◽  
Vol 22 (3) ◽  
pp. 515-527
Author(s):  
Bret J. Benesh ◽  
Dana C. Ernst ◽  
Nándor Sieben

AbstractWe study an impartial game introduced by Anderson and Harary. The game is played by two players who alternately choose previously-unselected elements of a finite group. The first player who builds a generating set from the jointly-selected elements wins. We determine the nim-numbers of this game for finite groups of the form{T\times H}, whereTis a 2-group andHis a group of odd order. This includes all nilpotent and hence abelian groups.


2018 ◽  
Vol 25 (04) ◽  
pp. 541-546
Author(s):  
Jiangtao Shi ◽  
Klavdija Kutnar ◽  
Cui Zhang

A finite group G is called a special local 2-nilpotent group if G is not 2-nilpotent, the Sylow 2-subgroup P of G has a section isomorphic to the quaternion group of order 8, [Formula: see text] and NG(P) is 2-nilpotent. In this paper, it is shown that SL2(q), [Formula: see text], is a special local 2-nilpotent group if and only if [Formula: see text], and that GL2(q), [Formula: see text], is a special local 2-nilpotent group if and only if q is odd. Moreover, the solvability of finite groups is also investigated by giving two generalizations of a result from [A note on p-nilpotence and solvability of finite groups, J. Algebra 321 (2009) 1555–1560].


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Stefanos Aivazidis ◽  
Thomas Müller

Abstract Theorem C in [S. Dolfi, M. Herzog, G. Kaplan and A. Lev, The size of the solvable residual in finite groups, Groups Geom. Dyn. 1 (2007), 4, 401–407] asserts that, in a finite group with trivial Fitting subgroup, the size of the soluble residual of the group is bounded from below by a certain power of the group order and that the inequality is sharp. Inspired by this result and some of the arguments in the above article, we establish the following generalisation: if 𝔛 is a subgroup-closed Fitting formation of full characteristic which does not contain all finite groups and X ¯ \overline{\mathfrak{X}} is the extension-closure of 𝔛, then there exists an (explicitly known and optimal) constant 𝛾 depending only on 𝔛 such that, for all non-trivial finite groups 𝐺 with trivial 𝔛-radical, | G X ¯ | > | G | γ \lvert G^{\overline{\mathfrak{X}}}\rvert>\lvert G\rvert^{\gamma} , where G X ¯ G^{\overline{\mathfrak{X}}} is the X ¯ \overline{\mathfrak{X}} -residual of 𝐺. When X = N \mathfrak{X}=\mathfrak{N} , the class of finite nilpotent groups, it follows that X ¯ = S \overline{\mathfrak{X}}=\mathfrak{S} , the class of finite soluble groups; thus we recover the original theorem of Dolfi, Herzog, Kaplan, and Lev. In the last section of our paper, building on J. G. Thompson’s classification of minimal simple groups, we exhibit a family of subgroup-closed Fitting formations 𝔛 of full characteristic such that S ⊂ X ¯ ⊂ E \mathfrak{S}\subset\overline{\mathfrak{X}}\subset\mathfrak{E} , where 𝔈 denotes the class of all finite groups, thus providing applications of our main result beyond the reach of the above theorem.


1985 ◽  
Vol 32 (2) ◽  
pp. 293-297 ◽  
Author(s):  
Peter Förster

Nilpotent injectors exist in all finite groups.For every Fitting class F of finite groups (see [2]), InjF(G) denotes the set of all H ≤ G such that for each N ⊴ ⊴ G , H ∩ N is an F -maximal subgroup of N (that is, belongs to F and i s maximal among the subgroups of N with this property). Let W and N* denote the Fitting class of all nilpotent and quasi-nilpotent groups, respectively. (For the basic properties of quasi-nilpotent groups, and of the N*-radical F*(G) of a finite group G3 the reader is referred to [5].,X. %13; we shall use these properties without further reference.) Blessenohl and H. Laue have shown in CJ] that for every finite group G, InjN*(G) = {H ≤ G | H ≥ F*(G) N*-maximal in G} is a non-empty conjugacy class of subgroups of G. More recently, Iranzo and Perez-Monasor have verified InjN(G) ≠ Φ for all finite groups G satisfying G = CG(E(G))E(G) (see [6]), and have extended this result to a somewhat larger class M of finite groups C(see [7]). One checks, however, that M does not contain all finite groups; for example, S5 ε M.


1969 ◽  
Vol 21 ◽  
pp. 418-429 ◽  
Author(s):  
James C. Beidleman

The theory of generalized Frattini subgroups of a finite group is continued in this paper. Several equivalent conditions are given for a proper normal subgroup H of a finite group G to be a generalized Frattini subgroup of G. One such condition on H is that K is nilpotent for each normal subgroup K of G such that K/H is nilpotent. From this result, it follows that the weakly hyper-central normal subgroups of a finite non-nilpotent group G are generalized Frattini subgroups of G.Let H be a generalized Frattini subgroup of G and let K be a subnormal subgroup of G which properly contains H. Then H is a generalized Frattini subgroup of K.Let ϕ(G) be the Frattini subgroup of G. Suppose that G/ϕ(G) is nonnilpotent, but every proper subgroup of G/ϕ(G) is nilpotent. Then ϕ(G) is the unique maximal generalized Frattini subgroup of G.


2019 ◽  
Vol 18 (10) ◽  
pp. 1950200
Author(s):  
Chi Zhang ◽  
Alexander N. Skiba

Let [Formula: see text] be a partition of the set [Formula: see text] of all primes and [Formula: see text] a finite group. A chief factor [Formula: see text] of [Formula: see text] is said to be [Formula: see text]-central if the semidirect product [Formula: see text] is a [Formula: see text]-group for some [Formula: see text]. [Formula: see text] is called [Formula: see text]-nilpotent if every chief factor of [Formula: see text] is [Formula: see text]-central. We say that [Formula: see text] is semi-[Formula: see text]-nilpotent (respectively, weakly semi-[Formula: see text]-nilpotent) if the normalizer [Formula: see text] of every non-normal (respectively, every non-subnormal) [Formula: see text]-nilpotent subgroup [Formula: see text] of [Formula: see text] is [Formula: see text]-nilpotent. In this paper we determine the structure of finite semi-[Formula: see text]-nilpotent and weakly semi-[Formula: see text]-nilpotent groups.


1973 ◽  
Vol 9 (2) ◽  
pp. 267-274 ◽  
Author(s):  
Fletcher Gross

Suppose G = AB where G is a finite group and A and B are nilpotent subgroups. It is proved that the derived length of G modulo its Frattini subgroup is at most the sum of the classes of A and B. An upper bound for the derived length of G in terms of the derived lengths of A and B also is obtained.


Author(s):  
Ruslan V. Borodich

In the work of Beidleman and Smith [On Frattini-like subgroups, Glasgow Math. J. 35 (1993) 95–98], the following question was raised: “If [Formula: see text] is a subnormal subgroup of a finite group [Formula: see text] containing [Formula: see text], then whether the supersolvability of [Formula: see text] follows the supersolvability of [Formula: see text]”. This problem was considered in works of Selkin [Maximal Subgroups in the Theory of Classes of Finite Groups (Belaruskaya, Navuka, 1997)], Skiba [On the intersection of all maximal [Formula: see text]-subgroups of a finite group, Prob. Phys. Math. Tech. 3(4) (2010) 56–62], Ballester-Bolinches [On [Formula: see text]-subnormal subgroups and Frattini-like subgroups of a finite group, Glasgow Math. J. 36 (1994) 241–247] and many other authors (see monograph [Maximal Subgroups in the Theory of Classes of Finite Groups (Belaruskaya, Navuka, 1997)]). In this paper, we give the answer to the more general question: “Let [Formula: see text] be a local formation. If [Formula: see text] is a subnormal subgroup of a group [Formula: see text], then in what case [Formula: see text] will follow from [Formula: see text]”.


Author(s):  
M. J. Tomkinson

The Frattini subgroup φ(G) of a group G is the intersection of G and all its maximal subgroups. The following results for finite groups are well known:THEOREM A0. If G is a finite group, then the following three conditions are equivalent:(i) G is nilpotent,(ii) G/φ(G) is nilpotent,(iii) φ(G) ≥ G′.


Sign in / Sign up

Export Citation Format

Share Document