Subnormality and residuals for saturated formations: A generalization of Schenkman’s theorem

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Stefanos Aivazidis ◽  
Inna N. Safonova ◽  
Alexander N. Skiba

Abstract Let 𝐺 be a finite group, and let 𝔉 be a hereditary saturated formation. We denote by Z F ⁢ ( G ) \mathbf{Z}_{\mathfrak{F}}(G) the product of all normal subgroups 𝑁 of 𝐺 such that every chief factor H / K H/K of 𝐺 below 𝑁 is 𝔉-central in 𝐺, that is, ( H / K ) ⋊ ( G / C G ⁢ ( H / K ) ) ∈ F (H/K)\rtimes(G/\mathbf{C}_{G}(H/K))\in\mathfrak{F} . A subgroup A ⩽ G A\leqslant G is said to be 𝔉-subnormal in the sense of Kegel, or 𝐾-𝔉-subnormal in 𝐺, if there is a subgroup chain A = A 0 ⩽ A 1 ⩽ ⋯ ⩽ A n = G A=A_{0}\leqslant A_{1}\leqslant\cdots\leqslant A_{n}=G such that either A i - 1 ⁢ ⊴ ⁢ A i A_{i-1}\trianglelefteq A_{i} or A i / ( A i - 1 ) A i ∈ F A_{i}/(A_{i-1})_{A_{i}}\in\mathfrak{F} for all i = 1 , … , n i=1,\ldots,n . In this paper, we prove the following generalization of Schenkman’s theorem on the centraliser of the nilpotent residual of a subnormal subgroup: Let 𝔉 be a hereditary saturated formation containing all nilpotent groups, and let 𝑆 be a 𝐾-𝔉-subnormal subgroup of 𝐺. If Z F ⁢ ( E ) = 1 \mathbf{Z}_{\mathfrak{F}}(E)=1 for every subgroup 𝐸 of 𝐺 such that S ⩽ E S\leqslant E , then C G ⁢ ( D ) ⩽ D \mathbf{C}_{G}(D)\leqslant D , where D = S F D=S^{\mathfrak{F}} is the 𝔉-residual of 𝑆.

2018 ◽  
Vol 21 (3) ◽  
pp. 463-473
Author(s):  
Viachaslau I. Murashka

Abstract Let {\mathfrak{X}} be a class of groups. A subgroup U of a group G is called {\mathfrak{X}} -maximal in G provided that (a) {U\in\mathfrak{X}} , and (b) if {U\leq V\leq G} and {V\in\mathfrak{X}} , then {U=V} . A chief factor {H/K} of G is called {\mathfrak{X}} -eccentric in G provided {(H/K)\rtimes G/C_{G}(H/K)\not\in\mathfrak{X}} . A group G is called a quasi- {\mathfrak{X}} -group if for every {\mathfrak{X}} -eccentric chief factor {H/K} and every {x\in G} , x induces an inner automorphism on {H/K} . We use {\mathfrak{X}^{*}} to denote the class of all quasi- {\mathfrak{X}} -groups. In this paper we describe all hereditary saturated formations {\mathfrak{F}} containing all nilpotent groups such that the {\mathfrak{F}^{*}} -hypercenter of G coincides with the intersection of all {\mathfrak{F}^{*}} -maximal subgroups of G for every group G.


1994 ◽  
Vol 36 (2) ◽  
pp. 241-247 ◽  
Author(s):  
A. Ballester-Bolinches ◽  
M. D. Pérez-Ramos

Throughout the paper we consider only finite groups.J. C. Beidleman and H. Smith [3] have proposed the following question: “If G is a group and Ha subnormal subgroup of G containing Φ(G), the Frattini subgroup of G, such that H/Φ(G)is supersoluble, is H necessarily supersoluble? “In this paper, we give not only an affirmative answer to this question but also we see that the above result still holds if supersoluble is replaced by any saturated formation containing the class of all nilpotent groups.


1991 ◽  
Vol 110 (2) ◽  
pp. 229-244 ◽  
Author(s):  
Elizabeth A. Ormerod

The Wielandt subgroup ω(G) of a group G is the subgroup of elements that normalize every subnormal subgroup of G. This subgroup, now named for Wielandt, was introduced by him in 1958 [15]. For a finite non-trivial group the Wielandt subgroup is always a non-trivial, characteristic subgroup. Thus it is possible to define the ascending Wielandt series for a finite group G which terminates at the group. Write ω0(G) = 1, and for i ≥ 1, ωi(G)/ωi–1(G) = ω(G/ωi–1(G)). The smallest n such that ωn(G) = G is called the Wielandt length of G, and the class of groups of Wielandt length at most n is denoted by . From the definition it follows that is closed under homomorphic images and taking normal subgroups. Nilpotent groups in are also closed under taking subgroups.


2019 ◽  
Vol 22 (6) ◽  
pp. 1035-1047 ◽  
Author(s):  
Zhang Chi ◽  
Alexander N. Skiba

Abstract Let {\mathfrak{F}} be a non-empty class of groups, let G be a finite group and let {\mathcal{L}(G)} be the lattice of all subgroups of G. A chief {H/K} factor of G is {\mathfrak{F}} -central in G if {(H/K)\rtimes(G/C_{G}(H/K))\in\mathfrak{F}} . Let {\mathcal{L}_{c\mathfrak{F}}(G)} be the set of all subgroups A of G such that every chief factor {H/K} of G between {A_{G}} and {A^{G}} is {\mathfrak{F}} -central in G; {\mathcal{L}_{\mathfrak{F}}(G)} denotes the set of all subgroups A of G with {A^{G}/A_{G}\in\mathfrak{F}} . We prove that the set {\mathcal{L}_{c\mathfrak{F}}(G)} and, in the case when {\mathfrak{F}} is a Fitting formation, the set {\mathcal{L}_{\mathfrak{F}}(G)} are sublattices of the lattice {\mathcal{L}(G)} . We also study conditions under which the lattice {\mathcal{L}_{c\mathfrak{N}}(G)} and the lattice of all subnormal subgroup of G are modular.


1994 ◽  
Vol 36 (2) ◽  
pp. 185-195 ◽  
Author(s):  
Hermann Heinenken

There are two families of group classes that are of particular interest for clearing up the structure of finite soluble groups: Saturated formations and Fitting classes. In both cases there is a unique conjugacy class of subgroups which are maximal as members of the respective class combined with the property of being suitably mapped by homomorphisms (in the case of saturated formations) or intersecting suitably with normal subgroups (when considering Fitting classes). While it does not seem too difficult, however, to determine the smallest saturated formation containing a given group, the same problem regarding Fitting classes does not seem answered for the dihedral group of order 6. The object of this paper is to determine the smallest Fitting class containing one of the groups described explicitly later on; all of them are qp-groups with cyclic commutator quotient group and only one minimal normal subgroup which in addition coincides with the centre. Unlike the results of McCann [7], which give a determination “up to metanilpotent groups”, the description is complete in this case. Another family of Fitting classes generated by a metanilpotent group was considered and described completely by Hawkes (see [5, Theorem 5.5 p. 476]); it was shown later by Brison [1, Proposition 8.7, Corollary 8.8], that these classes are in fact generated by one finite group. The Fitting classes considered here are not contained in the Fitting class of all nilpotent groups but every proper Fitting subclass is. They have the following additional properties: all minimal normal subgroups are contained in the centre (this follows in fact from Gaschiitz [4, Theorem 10, p. 64]) and the nilpotent residual is nilpotent of class two (answering the open question on p. 482 of Hawkes [5]), while the quotient group modulo the Fitting subgroup may be nilpotent of any class. In particular no one of these classes consists of supersoluble groups only.


Author(s):  
Viktoria S. Zakrevskaya

Let σ = {σi|i ∈ I } be a partition of the set of all primes ℙ and G be a finite group. A set ℋ  of subgroups of G is said to be a complete Hall σ-set of G if every member ≠1 of ℋ  is a Hall σi-subgroup of G for some i ∈ I and ℋ contains exactly one Hall σi-subgroup of G for every i such that σi ⌒ π(G)  ≠ ∅.  A group is said to be σ-primary if it is a finite σi-group for some i. A subgroup A of G is said to be: σ-permutable in G if G possesses a complete Hall σ-set ℋ  such that AH x = H  xA for all H ∈ ℋ  and all x ∈ G; σ-subnormal in G if there is a subgroup chain A = A0 ≤ A1 ≤ … ≤ At = G such that either Ai − 1 ⊴ Ai or Ai /(Ai − 1)Ai is σ-primary for all i = 1, …, t; 𝔄-normal in G if every chief factor of G between AG and AG is cyclic. We say that a subgroup H of G is: (i) partially σ-permutable in G if there are a 𝔄-normal subgroup A and a σ-permutable subgroup B of G such that H = < A, B >; (ii) (𝔄, σ)-embedded in G if there are a partially σ-permutable subgroup S and a σ-subnormal subgroup T of G such that G = HT and H ∩ T ≤ S ≤ H. We study G assuming that some subgroups of G are partially σ-permutable or (𝔄, σ)-embedded in G. Some known results are generalised.


2007 ◽  
Vol 14 (01) ◽  
pp. 25-36 ◽  
Author(s):  
A. Y. Alsheik Ahmad ◽  
J. J. Jaraden ◽  
Alexander N. Skiba

Let G be a finite group. We say that a subgroup H of G is [Formula: see text]-normal in G if G has a subnormal subgroup T such that TH = G and (H ∩ T)HG/HG is contained in the [Formula: see text]-hypercenter [Formula: see text] of G/HG, where [Formula: see text] is the class of the finite supersoluble groups. We study the structure of G under the assumption that some subgroups of G are [Formula: see text]-normal in G.


2014 ◽  
Vol 56 (3) ◽  
pp. 691-703 ◽  
Author(s):  
A. BALLESTER-BOLINCHES ◽  
J. C. BEIDLEMAN ◽  
A. D. FELDMAN ◽  
M. F. RAGLAND

AbstractFor a formation $\mathfrak F$, a subgroup M of a finite group G is said to be $\mathfrak F$-pronormal in G if for each g ∈ G, there exists x ∈ 〈U,Ug〉$\mathfrak F$ such that Ux = Ug. Let f be a subgroup embedding functor such that f(G) contains the set of normal subgroups of G and is contained in the set of Sylow-permutable subgroups of G for every finite group G. Given such an f, let fT denote the class of finite groups in which f(G) is the set of subnormal subgroups of G; this is the class of all finite groups G in which to be in f(G) is a transitive relation in G. A subgroup M of a finite group G is said to be $\mathfrak F$-normal in G if G/CoreG(M) belongs to $\mathfrak F$. A subgroup U of a finite group G is called K-$\mathfrak F$-subnormal in G if either U = G or there exist subgroups U = U0 ≤ U1 ≤ . . . ≤ Un = G such that Ui–1 is either normal or $\mathfrak F$-normal in Ui, for i = 1,2, …, n. We call a finite group G an $fT_{\mathfrak F}$-group if every K-$\mathfrak F$-subnormal subgroup of G is in f(G). In this paper, we analyse for certain formations $\mathfrak F$ the structure of $fT_{\mathfrak F}$-groups. We pay special attention to the $\mathfrak F$-pronormal subgroups in this analysis.


1969 ◽  
Vol 21 ◽  
pp. 418-429 ◽  
Author(s):  
James C. Beidleman

The theory of generalized Frattini subgroups of a finite group is continued in this paper. Several equivalent conditions are given for a proper normal subgroup H of a finite group G to be a generalized Frattini subgroup of G. One such condition on H is that K is nilpotent for each normal subgroup K of G such that K/H is nilpotent. From this result, it follows that the weakly hyper-central normal subgroups of a finite non-nilpotent group G are generalized Frattini subgroups of G.Let H be a generalized Frattini subgroup of G and let K be a subnormal subgroup of G which properly contains H. Then H is a generalized Frattini subgroup of K.Let ϕ(G) be the Frattini subgroup of G. Suppose that G/ϕ(G) is nonnilpotent, but every proper subgroup of G/ϕ(G) is nilpotent. Then ϕ(G) is the unique maximal generalized Frattini subgroup of G.


2019 ◽  
Vol 18 (10) ◽  
pp. 1950200
Author(s):  
Chi Zhang ◽  
Alexander N. Skiba

Let [Formula: see text] be a partition of the set [Formula: see text] of all primes and [Formula: see text] a finite group. A chief factor [Formula: see text] of [Formula: see text] is said to be [Formula: see text]-central if the semidirect product [Formula: see text] is a [Formula: see text]-group for some [Formula: see text]. [Formula: see text] is called [Formula: see text]-nilpotent if every chief factor of [Formula: see text] is [Formula: see text]-central. We say that [Formula: see text] is semi-[Formula: see text]-nilpotent (respectively, weakly semi-[Formula: see text]-nilpotent) if the normalizer [Formula: see text] of every non-normal (respectively, every non-subnormal) [Formula: see text]-nilpotent subgroup [Formula: see text] of [Formula: see text] is [Formula: see text]-nilpotent. In this paper we determine the structure of finite semi-[Formula: see text]-nilpotent and weakly semi-[Formula: see text]-nilpotent groups.


Sign in / Sign up

Export Citation Format

Share Document