scholarly journals GK–DIMENSION OF ALGEBRAS WITH MANY GENERIC RELATIONS

2009 ◽  
Vol 51 (2) ◽  
pp. 253-256 ◽  
Author(s):  
AGATA SMOKTUNOWICZ

AbstractWe prove some results on algebras, satisfying many generic relations. As an application we show that there are Golod–Shafarevich algebras which cannot be homomorphically mapped onto infinite dimensional algebras with finite Gelfand–Kirillov dimension. This answers a question of Zelmanov (Some open problems in the theory of infinite dimensional algebras, J. Korean Math. Soc. 44(5) 2007, 1185–1195).

2014 ◽  
Vol 24 (03) ◽  
pp. 365-374 ◽  
Author(s):  
Lucio Centrone

We consider the infinite dimensional Grassmann algebra E over a field F of characteristic 0 or p, where p > 2, and we compute its ℤ2-graded Gelfand–Kirillov (GK) dimension as a ℤ2-graded PI-algebra.


2008 ◽  
Vol 19 (10) ◽  
pp. 1187-1201 ◽  
Author(s):  
MASAYASU MORIWAKI

Kazhdan, Kostant, Binegar–Zierau and Kobayashi–Ørsted constructed a distinguished infinite-dimensional irreducible unitary representation π of the indefinite orthogonal group G = O(2p, 2q) for p, q ≥ 1 with p + q > 2, which has the smallest Gelfand–Kirillov dimension 2p + 2q - 3 among all infinite-dimensional irreducible unitary representations of G and hence is called the minimal representation. We consider, for which subgroup G′ of G, the restriction π|G′ is multiplicity-free. We prove that the restriction of π to any subgroup containing the direct product group U(p1) × U(p2) × U(q) for p1, p2 ≥ 1 with p1 + p2 = p is multiplicity-free, whereas the restriction to U(p1) × U(p2) × U(q1) × U(q2) for q1, q2 ≥ 1 with q1 + q2 = q has infinite multiplicities.


2016 ◽  
Vol 26 (06) ◽  
pp. 1125-1140 ◽  
Author(s):  
Lucio Centrone ◽  
Viviane Ribeiro Tomaz da Silva

Let [Formula: see text] be a finite abelian group. As a consequence of the results of Di Vincenzo and Nardozza, we have that the generators of the [Formula: see text]-ideal of [Formula: see text]-graded identities of a [Formula: see text]-graded algebra in characteristic 0 and the generators of the [Formula: see text]-ideal of [Formula: see text]-graded identities of its tensor product by the infinite-dimensional Grassmann algebra [Formula: see text] endowed with the canonical grading have pairly the same degree. In this paper, we deal with [Formula: see text]-graded identities of [Formula: see text] over an infinite field of characteristic [Formula: see text], where [Formula: see text] is [Formula: see text] endowed with a specific [Formula: see text]-grading. We find identities of degree [Formula: see text] and [Formula: see text] while the maximal degree of a generator of the [Formula: see text]-graded identities of [Formula: see text] is [Formula: see text] if [Formula: see text]. Moreover, we find a basis of the [Formula: see text]-graded identities of [Formula: see text] and also a basis of multihomogeneous polynomials for the relatively free algebra. Finally, we compute the [Formula: see text]-graded Gelfand–Kirillov (GK) dimension of [Formula: see text].


1974 ◽  
Vol 26 (1) ◽  
pp. 115-120 ◽  
Author(s):  
Carl Pearcy ◽  
Norberto Salinas

Let be a fixed separable, infinite dimensional complex Hilbert space, and let () denote the algebra of all (bounded, linear) operators on . The ideal of all compact operators on will be denoted by and the canonical quotient map from () onto the Calkin algebra ()/ will be denoted by π.Some open problems in the theory of extensions of C*-algebras (cf. [1]) have recently motivated an increasing interest in the class of all operators in () whose self-commuta tor is compact.


2019 ◽  
Vol 72 (4) ◽  
pp. 988-1023
Author(s):  
Clayton Suguio Hida ◽  
Piotr Koszmider

AbstractA subset ${\mathcal{X}}$ of a C*-algebra ${\mathcal{A}}$ is called irredundant if no $A\in {\mathcal{X}}$ belongs to the C*-subalgebra of ${\mathcal{A}}$ generated by ${\mathcal{X}}\setminus \{A\}$. Separable C*-algebras cannot have uncountable irredundant sets and all members of many classes of nonseparable C*-algebras, e.g., infinite dimensional von Neumann algebras have irredundant sets of cardinality continuum.There exists a considerable literature showing that the question whether every AF commutative nonseparable C*-algebra has an uncountable irredundant set is sensitive to additional set-theoretic axioms, and we investigate here the noncommutative case.Assuming $\diamondsuit$ (an additional axiom stronger than the continuum hypothesis), we prove that there is an AF C*-subalgebra of ${\mathcal{B}}(\ell _{2})$ of density $2^{\unicode[STIX]{x1D714}}=\unicode[STIX]{x1D714}_{1}$ with no nonseparable commutative C*-subalgebra and with no uncountable irredundant set. On the other hand we also prove that it is consistent that every discrete collection of operators in ${\mathcal{B}}(\ell _{2})$ of cardinality continuum contains an irredundant subcollection of cardinality continuum.Other partial results and more open problems are presented.


2014 ◽  
Vol 25 (06) ◽  
pp. 1450052
Author(s):  
Jan Möllers ◽  
Benjamin Schwarz

The unitary principal series representations of G = GL (n, ℂ) induced from a character of the maximal parabolic subgroup P = ( GL (1, ℂ) × GL (n - 1, ℂ)) ⋉ ℂn-1 attain the minimal Gelfand–Kirillov dimension among all infinite-dimensional unitary representations of G. We find the explicit branching laws for the restriction of these representations to all reductive subgroups H of G such that (G, H) forms a symmetric pair.


2015 ◽  
Vol 36 (8) ◽  
pp. 2627-2660 ◽  
Author(s):  
JUHO RAUTIO

The structures of the enveloping semigroups of certain elementary finite- and infinite-dimensional distal dynamical systems are given, answering open problems posed in 1982 by Namioka [Ellis groups and compact right topological groups. Conference in Modern Analysis and Probability (New Haven, CT, 1982) (Contemporary Mathematics, 26). American Mathematical Society, Providence, RI, 1984, 295–300]. The universal minimal system with (topological) quasi-discrete spectrum is obtained from the infinite-dimensional case. It is proved that, on the one hand, a minimal system is a factor of this universal system if and only if its enveloping semigroup has quasi-discrete spectrum and that, on the other hand, such a factor need not have quasi-discrete spectrum in itself. This leads to a natural generalization of the property of having quasi-discrete spectrum, which is named the ${\mathcal{W}}$-property.


Sign in / Sign up

Export Citation Format

Share Document