CLASSES OF SEQUENTIALLY LIMITED OPERATORS

2015 ◽  
Vol 58 (3) ◽  
pp. 573-586
Author(s):  
JAN H. FOURIE ◽  
ELROY D. ZEEKOEI

AbstractThe purpose of this paper is to present a brief discussion of both the normed space of operator p-summable sequences in a Banach space and the normed space of sequentially p-limited operators. The focus is on proving that the vector space of all operator p-summable sequences in a Banach space is a Banach space itself and that the class of sequentially p-limited operators is a Banach operator ideal with respect to a suitable ideal norm- and to discuss some other properties and multiplication results of related classes of operators. These results are shown to fit into a general discussion of operator [Y,p]-summable sequences and relevant operator ideals.

Author(s):  
Hans-Olav Tylli

Special operator-ideal approximation properties (APs) of Banach spaces are employed to solve the problem of whether the distance functions S ↦ dist(S*, I(F*, E*)) and S ↦ dist(S, I*(E, F)) are uniformly comparable in each space L(E, F) of bounded linear operators. Here, I*(E, F) = {S ∈ L(E, F) : S* ∈ I(F*, E*)} stands for the adjoint ideal of the closed operator ideal I for Banach spaces E and F. Counterexamples are obtained for many classical surjective or injective Banach operator ideals I by solving two resulting ‘asymmetry’ problems for these operator-ideal APs.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Toufik Tiaiba ◽  
Dahmane Achour

Abstract We introduce and investigate the injective hull of the strongly Lipschitz classical p-compact operator ideal defined between a pointed metric space and a Banach space. As an application we extend some characterizations of the injective hull of the strongly Lipschitz classical p-compact from the linear case to the Lipschitz case. Also, we introduce the ideal of Lipschitz unconditionally quasi p-nuclear operators between pointed metric spaces and show that it coincides with the Lipschitz injective hull of the ideal of Lipschitz classical p-compact operators.


2000 ◽  
Vol 87 (2) ◽  
pp. 200
Author(s):  
Frédérique Watbled

Let $X$ be a Banach space compatible with its antidual $\overline{X^*}$, where $\overline{X^*}$ stands for the vector space $X^*$ where the multiplication by a scalar is replaced by the multiplication $\lambda \odot x^* = \overline{\lambda} x^*$. Let $H$ be a Hilbert space intermediate between $X$ and $\overline{X^*}$ with a scalar product compatible with the duality $(X,X^*)$, and such that $X \cap \overline{X^*}$ is dense in $H$. Let $F$ denote the closure of $X \cap \overline{X^*}$ in $\overline{X^*}$ and suppose $X \cap \overline{X^*}$ is dense in $X$. Let $K$ denote the natural map which sends $H$ into the dual of $X \cap F$ and for every Banach space $A$ which contains $X \cap F$ densely let $A'$ be the realization of the dual space of $A$ inside the dual of $X \cap F$. We show that if $\vert \langle K^{-1}a, K^{-1}b \rangle_H \vert \leq \parallel a \parallel_{X'} \parallel b \parallel_{F'}$ whenever $a$ and $b$ are both in $X' \cap F'$ then $(X, \overline{X^*})_{\frac12} = H$ with equality of norms. In particular this equality holds true if $X$ embeds in $H$ or $H$ embeds densely in $X$. As other particular cases we mention spaces $X$ with a $1$-unconditional basis and Köthe function spaces on $\Omega$ intermediate between $L^1(\Omega)$ and $L^\infty(\Omega)$.


1983 ◽  
Vol 26 (2) ◽  
pp. 163-167 ◽  
Author(s):  
L. Drewnowski

Following Lotz, Peck and Porta [9], a continuous linear operator from one Banach space into another is called a semi-embedding if it is one-to-one and maps the closed unit ball of the domain onto a closed (hence complete) set. (Below we shall allow the codomain to be an F-space, i.e., a complete metrisable topological vector space.) One of the main results established in [9] is that if X is a compact scattered space, then every semi-embedding of C(X) into another Banach space is an isomorphism ([9], Main Theorem, (a)⇒(b)).


1973 ◽  
Vol 16 (1) ◽  
pp. 54-69 ◽  
Author(s):  
W. T. van Est ◽  
S. Świerczkowski

In this note “vector space” will mean “Banach space” unless otherwise specified. Accordingly “Lie algebra” will stand for “Banach Lie algebra”. Morphisms between Lie algebras will be assumed continuous. A Banach algebra B will be always assumed associative, and it will be also viewed as a Lie algebra with product [X, YXY− YX. In particular, the Lie algebra gl(V) of endomorphisms of a vector space V will be equipped with the uniform norm. A morphism of Lie algebras L → gl(V) will b called a representation of L in gl(V). Also, if B is a Banach algebra, a morphism of Lie algebras L → B will be called a representation of L in B. From such one evidently obtains a representation of L in gl(B). A representation will be called faithful if it is injective.


2017 ◽  
Vol 95 (2) ◽  
pp. 269-280 ◽  
Author(s):  
LADDAWAN AIEMSOMBOON ◽  
WUTIPHOL SINTUNAVARAT

Let $X$ be a nonempty subset of a normed space such that $0\notin X$ and $X$ is symmetric with respect to $0$ and let $Y$ be a Banach space. We study the generalised hyperstability of the Drygas functional equation $$\begin{eqnarray}f(x+y)+f(x-y)=2f(x)+f(y)+f(-y),\end{eqnarray}$$ where $f$ maps $X$ into $Y$ and $x,y\in X$ with $x+y,x-y\in X$. Our first main result improves the results of Piszczek and Szczawińska [‘Hyperstability of the Drygas functional equation’, J. Funct. Space Appl.2013 (2013), Article ID 912718, 4 pages]. Hyperstability results for the inhomogeneous Drygas functional equation can be derived from our results.


1969 ◽  
Vol 10 (1) ◽  
pp. 73-76 ◽  
Author(s):  
J. Duncan

In this note we shall employ the notation of [1] without further mention. Thus X denotes a normed space and P the subset of X × X′ given byGiven a subalgebra of B(X), the set {Φ(X,f):(x,f) ∈ P} of evaluation functional on is denoted by II. We shall prove that if X is a Banach space and if contains all the bounded operators of finite rank, then Π is norm closed in ′. We give an example to show that Π need not be weak* closed in ″. We show also that FT need not be norm closed in ″ if X is not complete.


2013 ◽  
Vol 56 (2) ◽  
pp. 427-437 ◽  
Author(s):  
ANIL KUMAR KARN ◽  
DEBA PRASAD SINHA

AbstractLet 1 ≤ p < ∞. A sequence 〈 xn 〉 in a Banach space X is defined to be p-operator summable if for each 〈 fn 〉 ∈ lw*p(X*) we have 〈〈 fn(xk)〉k〉n ∈ lsp(lp). Every norm p-summable sequence in a Banach space is operator p-summable whereas in its turn every operator p-summable sequence is weakly p-summable. An operator T ∈ B(X, Y) is said to be p-limited if for every 〈 xn 〉 ∈ lpw(X), 〈 Txn 〉 is operator p-summable. The set of all p-limited operators forms a normed operator ideal. It is shown that every weakly p-summable sequence in X is operator p-summable if and only if every operator T ∈ B(X, lp) is p-absolutely summing. On the other hand, every operator p-summable sequence in X is norm p-summable if and only if every p-limited operator in B(lp', X) is absolutely p-summing. Moreover, this is the case if and only if X is a subspace of Lp(μ) for some Borel measure μ.


Sign in / Sign up

Export Citation Format

Share Document