D3-MODULES VERSUS D4-MODULES – APPLICATIONS TO QUIVERS

2020 ◽  
pp. 1-27
Author(s):  
GABRIELLA D′ESTE ◽  
DERYA KESKİN TÜTÜNCÜ ◽  
RACHID TRIBAK

Abstract A module M is called a D4-module if, whenever A and B are submodules of M with M = A ⊕ B and f : A → B is a homomorphism with Imf a direct summand of B, then Kerf is a direct summand of A. The class of D4-modules contains the class of D3-modules, and hence the class of semi-projective modules, and so the class of Rickart modules. In this paper we prove that, over a commutative Dedekind domain R, for an R-module M which is a direct sum of cyclic submodules, M is direct projective (equivalently, it is semi-projective) iff M is D3 iff M is D4. Also we prove that, over a prime PI-ring, for a divisible R-module X, X is direct projective (equivalently, it is Rickart) iff X ⊕ X is D4. We determine some D3-modules and D4-modules over a discrete valuation ring, as well. We give some relevant examples. We also provide several examples on D3-modules and D4-modules via quivers.

1979 ◽  
Vol 27 (3) ◽  
pp. 284-288 ◽  
Author(s):  
Robert O. Stanton

AbstractLet N be a direct summand of a module which is a direct sum of modules of torsion-free rank one over a discrete valuation ring. Then there is a torsion module T such that N⊕T is also a direct sum of modules of torsion-free rank one.


2019 ◽  
Vol 11 (1) ◽  
pp. 224-233
Author(s):  
Burcu Nişancı Türkmen

Abstract Let M be an R-module and I be an ideal of R. We say that M is I-Rad-⊕-supplemented, provided for every submodule N of M, there exists a direct summand K of M such that M = N + K, N ∩ K ⊆ IK and N ∩ K Rad(K). The aim of this paper is to show new properties of I-Rad-⊕-supplemented modules. Especially, we show that any finite direct sum of I-Rad-⊕-supplemented modules is I-Rad-⊕-supplemented. We also prove that an R-module M is I-Rad-⊕-supplemented if and only if K and ${M \over K}$ are I-Rad-⊕-supplemented for a fully invariant direct summand K of M. Finally, we determine the structure of I-Rad-⊕-supplemented modules over a discrete valuation ring.


2020 ◽  
Vol 72 (7) ◽  
pp. 960-970
Author(s):  
R. Tribak

UDC 512.5 Let R be a ring and let Ω R be the set of maximal right ideals of R . An R -module M is called an sd-Rickart module if for every nonzero endomorphism f of M , ℑ f is a fully invariant direct summand of M . We obtain a characterization for an arbitrary direct sum of sd-Rickart modules to be sd-Rickart. We also obtain a decomposition of an sd-Rickart R -module M , provided R is a commutative noetherian ring and A s s ( M ) ∩ Ω R is a finite set. In addition, we introduce and study ageneralization of sd-Rickart modules.


2015 ◽  
Vol 22 (spec01) ◽  
pp. 849-870 ◽  
Author(s):  
Sh. Asgari ◽  
A. Haghany

We introduce the notion of t-Rickart modules as a generalization of t-Baer modules. Dual t-Rickart modules are also defined. Both of these are generalizations of continuous modules. Every direct summand of a t-Rickart (resp., dual t-Rickart) module inherits the property. Some equivalent conditions to being t-Rickart (resp., dual t-Rickart) are given. In particular, we show that a module M is t-Rickart (resp., dual t-Rickart) if and only if M is a direct sum of a Z2-torsion module and a nonsingular Rickart (resp., dual Rickart) module. It is proved that for a ring R, every R-module is dual t-Rickart if and only if R is right t-semisimple, while every R-module is t-Rickart if and only if R is right Σ-t-extending. Other types of rings are characterized by certain classes of t-Rickart (resp., dual t-Rickart) modules.


1982 ◽  
Vol 86 ◽  
pp. 203-209 ◽  
Author(s):  
David Eisenbud ◽  
Wolmer Vasconcelos ◽  
Roger Wiegand

An R-module M is a generator (of the category of modules) provided every module is a homomorphic image of a suitable direct sum of copies of M. Equivalently, some M(k) has R as a summand. Except in the last section, all rings are assumed to be commutative, Noetherian domains, and modules are usually finitely generated. In this context generators are exactly those modules that have non-zero free summands locally. Of course, generators can fail to have free summands (e.g., over Dedekind domains), and we ask whether they necessarily have non-zero projective summands. The answer is “yes” for rings of dimension 1, as we point out in § 3, and for the polynomial ring in one variable over a Dedekind domain. In § 1 we show that for 2-dimensional rings the answer is intimately connected with the structure of projective modules. Our main result in the positive direction, Theorem 1.3, grew out of the attempt, in conversations with T. Stafford, to understand the case R = k[x, y]. In § 2 we give examples of rings having generators with no projective summands. The last section contains miscellaneous observations, some of them on rings without chain conditions.


2019 ◽  
Vol 19 (11) ◽  
pp. 2050207
Author(s):  
Gangyong Lee ◽  
Mauricio Medina-Bárcenas

Hereditary rings have been extensively investigated in the literature after Kaplansky introduced them in the earliest 50’s. In this paper, we study the notion of a [Formula: see text]-Rickart module by utilizing the endomorphism ring of a module and using the recent notion of a Rickart module, as a module theoretic analogue of a right hereditary ring. A module [Formula: see text] is called [Formula: see text]-Rickart if every direct sum of copies of [Formula: see text] is Rickart. It is shown that any direct summand and any direct sum of copies of a [Formula: see text]-Rickart module are [Formula: see text]-Rickart modules. We also provide generalizations in a module theoretic setting of the most common results of hereditary rings: a ring [Formula: see text] is right hereditary if and only if every submodule of any projective right [Formula: see text]-module is projective if and only if every factor module of any injective right [Formula: see text]-module is injective. Also, we have a characterization of a finitely generated [Formula: see text]-Rickart module in terms of its endomorphism ring. Examples which delineate the concepts and results are provided.


2013 ◽  
Vol 63 (4) ◽  
Author(s):  
Beata Rothkegel

AbstractIn the paper we formulate a criterion for the nonsingularity of a bilinear form on a direct sum of finitely many invertible ideals of a domain. We classify these forms up to isometry and, in the case of a Dedekind domain, up to similarity.


1988 ◽  
Vol 104 (2) ◽  
pp. 207-213 ◽  
Author(s):  
Peter Symonds

If G is a group with a subgroup H and R is a Dedekind domain, then an H-projective RG-lattice is an RG-lattice that is a direct summand of an induced lattice for some RH-lattice N: they have been studied extensively in the context of modular representation theory. If H is the trivial group these are the projective lattices. We define a relative character χG/H on H-projective lattices, which in the case H = 1 is equivalent to the Hattori–Stallings trace for projective lattices (see [5, 8]), and in the case H = G is the ordinary character. These characters can be used to show that the R-ranks of certain H-projective lattices must be divisible by some specified number, generalizing some well-known results: cf. Corollary 3·6. If for example we take R = ℤ, then |G/H| divides the ℤ-rank of any H-projective ℤG-lattice.


2020 ◽  
Vol 12 (1) ◽  
pp. 69
Author(s):  
Dinamérico P. Pombo Jr ◽  
Patricia Couto G. Mauro

In this paper barrelled linearly topologized modules over an arbitrary discrete valuation ring are introduced. A general form of the Banach-Steinhaus theorem for continuous linear mappings on barrelled linearly topologized modules is established and some consequences of it are derived.


Sign in / Sign up

Export Citation Format

Share Document