A Duality Relation Between the Workload and Attained Waiting Time in FCFS G/G/s Queues

2013 ◽  
Vol 50 (01) ◽  
pp. 300-307
Author(s):  
Yi-Ching Yao

Sengupta (1989) showed that, for the first-come–first-served (FCFS) G/G/1 queue, the workload and attained waiting time of a customer in service have the same stationary distribution. Sakasegawa and Wolff (1990) derived a sample path version of this result, showing that the empirical distribution of the workload values over a busy period of a given sample path is identical to that of the attained waiting time values over the same period. For a given sample path of an FCFS G/G/s queue, we construct a dual sample path of a dual queue which is FCFS G/G/s in reverse time. It is shown that the workload process on the original sample path is identical to the total attained waiting time process on the dual sample path. As an application of this duality relation, we show that, for a time-stationary FCFS M/M/s/k queue, the workload process is equal in distribution to the time-reversed total attained waiting time process.

2013 ◽  
Vol 50 (1) ◽  
pp. 300-307
Author(s):  
Yi-Ching Yao

Sengupta (1989) showed that, for the first-come–first-served (FCFS) G/G/1 queue, the workload and attained waiting time of a customer in service have the same stationary distribution. Sakasegawa and Wolff (1990) derived a sample path version of this result, showing that the empirical distribution of the workload values over a busy period of a given sample path is identical to that of the attained waiting time values over the same period. For a given sample path of an FCFS G/G/s queue, we construct a dual sample path of a dual queue which is FCFS G/G/s in reverse time. It is shown that the workload process on the original sample path is identical to the total attained waiting time process on the dual sample path. As an application of this duality relation, we show that, for a time-stationary FCFS M/M/s/k queue, the workload process is equal in distribution to the time-reversed total attained waiting time process.


1969 ◽  
Vol 6 (01) ◽  
pp. 122-136 ◽  
Author(s):  
B.W. Conolly ◽  
N. Hadidi

A “correlated queue” is defined to be a queueing model in which the arrival pattern influences the service pattern or vice versa. A particular model of this nature is considered in this paper. It is such that the service time of a customer is directly proportional to the interval between his own arrival and that of his predecessor. The initial busy period, state and output processes are analyzed in detail. For completeness, a sketch is also given of the analysis of the waiting time process which forms the subject of another paper. The results are used in the analysis of the state and output processes.


1977 ◽  
Vol 9 (01) ◽  
pp. 169-186 ◽  
Author(s):  
Teunis J. Ott

Let X(t) be the virtual waiting-time process of a stable M/G/1 queue. Let R(t) be the covariance function of the stationary process X(t), B(t) the busy-period distribution of X(t); and let E(t) = P{X(t) = 0|X(0) = 0}. For X(t) some heavy-traffic results are given, among which are limiting expressions for R(t) and its derivatives and for B(t) and E(t). These results are used to find the covariance function of stationary Brownian motion on [0, ∞).


1969 ◽  
Vol 6 (1) ◽  
pp. 122-136 ◽  
Author(s):  
B.W. Conolly ◽  
N. Hadidi

A “correlated queue” is defined to be a queueing model in which the arrival pattern influences the service pattern or vice versa. A particular model of this nature is considered in this paper. It is such that the service time of a customer is directly proportional to the interval between his own arrival and that of his predecessor. The initial busy period, state and output processes are analyzed in detail. For completeness, a sketch is also given of the analysis of the waiting time process which forms the subject of another paper. The results are used in the analysis of the state and output processes.


1974 ◽  
Vol 11 (02) ◽  
pp. 355-362 ◽  
Author(s):  
Douglas P. Kennedy

The virtual waiting time process, W(t), in the M/G/1 queue is investigated under the condition that the initial busy period terminates but has not done so by time n ≥ t. It is demonstrated that, as n → ∞, W(t), suitably scaled and normed, converges to the unsigned Brownian excursion process or a modification of that process depending whether ρ ≠ 1 or ρ = 1, where ρ is the traffic intensity.


1974 ◽  
Vol 11 (2) ◽  
pp. 355-362 ◽  
Author(s):  
Douglas P. Kennedy

The virtual waiting time process, W(t), in the M/G/1 queue is investigated under the condition that the initial busy period terminates but has not done so by time n ≥ t. It is demonstrated that, as n → ∞, W(t), suitably scaled and normed, converges to the unsigned Brownian excursion process or a modification of that process depending whether ρ ≠ 1 or ρ = 1, where ρ is the traffic intensity.


1977 ◽  
Vol 9 (1) ◽  
pp. 169-186 ◽  
Author(s):  
Teunis J. Ott

Let X(t) be the virtual waiting-time process of a stable M/G/1 queue. Let R(t) be the covariance function of the stationary process X(t), B(t) the busy-period distribution of X(t); and let E(t) = P{X(t) = 0|X(0) = 0}.For X(t) some heavy-traffic results are given, among which are limiting expressions for R(t) and its derivatives and for B(t) and E(t).These results are used to find the covariance function of stationary Brownian motion on [0, ∞).


1989 ◽  
Vol 21 (02) ◽  
pp. 485-487 ◽  
Author(s):  
G. I. Falin

An analytic approach to the diffusion approximation in queueing due to Burman (1979) is applied to the M(t)/G/1/∞ queueing system with periodic Poisson arrivals. We show that under heavy traffic the virtual waiting time process can be approximated by a certain Wiener process with reflecting barrier at 0.


1975 ◽  
Vol 7 (3) ◽  
pp. 647-655 ◽  
Author(s):  
John Dagsvik

In a previous paper (Dagsvik (1975)) the waiting time process of the single server bulk queue is considered and a corresponding waiting time equation is established. In this paper the waiting time equation is solved when the inter-arrival or service time distribution is a linear combination of Erlang distributions. The analysis is essentially based on algebraic arguments.


Sign in / Sign up

Export Citation Format

Share Document