Average delay in queues with non-stationary Poisson arrivals

1978 ◽  
Vol 15 (03) ◽  
pp. 602-609 ◽  
Author(s):  
Sheldon M. Ross

One of the major difficulties in attempting to apply known queueing theory results to real problems is that almost always these results assume a time-stationary Poisson arrival process, whereas in practice the actual process is almost invariably non-stationary. In this paper we consider single-server infinite-capacity queueing models in which the arrival process is a non-stationary process with an intensity function ∧(t), t ≧ 0, which is itself a random process. We suppose that the average value of the intensity function exists and is equal to some constant, call it λ, with probability 1. We make a conjecture to the effect that ‘the closer {∧(t), t ≧ 0} is to the stationary Poisson process with rate λ ' then the smaller is the average customer delay, and then we verify the conjecture in the special case where the arrival process is an interrupted Poisson process.

1978 ◽  
Vol 15 (3) ◽  
pp. 602-609 ◽  
Author(s):  
Sheldon M. Ross

One of the major difficulties in attempting to apply known queueing theory results to real problems is that almost always these results assume a time-stationary Poisson arrival process, whereas in practice the actual process is almost invariably non-stationary. In this paper we consider single-server infinite-capacity queueing models in which the arrival process is a non-stationary process with an intensity function ∧(t), t ≧ 0, which is itself a random process. We suppose that the average value of the intensity function exists and is equal to some constant, call it λ, with probability 1.We make a conjecture to the effect that ‘the closer {∧(t), t ≧ 0} is to the stationary Poisson process with rate λ ' then the smaller is the average customer delay, and then we verify the conjecture in the special case where the arrival process is an interrupted Poisson process.


1982 ◽  
Vol 19 (01) ◽  
pp. 245-249 ◽  
Author(s):  
D. P. Heyman

Ross (1978) conjectured that the average delay in a single-server queue is larger when the arrival process is a non-stationary Poisson process than when it is a stationary Poisson process with the same rate. We present an example where equality obtains. When the number of waiting-positions is finite, Ross conjectured that the proportion of lost customers is greater in the nonstationary case. We present a counterexample to this conjecture.


1982 ◽  
Vol 19 (1) ◽  
pp. 245-249 ◽  
Author(s):  
D. P. Heyman

Ross (1978) conjectured that the average delay in a single-server queue is larger when the arrival process is a non-stationary Poisson process than when it is a stationary Poisson process with the same rate. We present an example where equality obtains. When the number of waiting-positions is finite, Ross conjectured that the proportion of lost customers is greater in the nonstationary case. We present a counterexample to this conjecture.


1997 ◽  
Vol 34 (3) ◽  
pp. 767-772 ◽  
Author(s):  
John A. Barnes ◽  
Richard Meili

The points of a non-stationary Poisson process with periodic intensity are independently shifted forward in time in such a way that the transformed process is stationary Poisson. The mean shift is shown to be minimal. The approach used is to consider an Mt/Gt/∞ queueing system where the arrival process is a non-stationary Poisson with periodic intensity function. A minimal service time distribution is constructed that yields a stationary Poisson departure process.


1984 ◽  
Vol 16 (01) ◽  
pp. 6
Author(s):  
David Y. Burman ◽  
Donald R. Smith

Consider a general single-server queue where the customers arrive according to a Poisson process whose rate is modulated according to an independent Markov process. The authors have previously reported on limits for the average delay in light and heavy traffic. In this paper we review these results, extend them to multiserver queues, and describe some approximations obtained from them for general delays.


1995 ◽  
Vol 32 (4) ◽  
pp. 1103-1111 ◽  
Author(s):  
Qing Du

Consider a single-server queue with zero buffer. The arrival process is a three-level Markov modulated Poisson process with an arbitrary transition matrix. The time the system remains at level i (i = 1, 2, 3) is exponentially distributed with rate cα i. The arrival rate at level i is λ i and the service time is exponentially distributed with rate μ i. In this paper we first derive an explicit formula for the loss probability and then prove that it is decreasing in the parameter c. This proves a conjecture of Ross and Rolski's for a single-server queue with zero buffer.


1976 ◽  
Vol 8 (2) ◽  
pp. 395-415 ◽  
Author(s):  
D. J. Daley

The paper reviews various aspects, mostly mathematical, concerning the output or departure process of a general queueing system G/G/s/N with general arrival process, mutually independent service times, s servers (1 ≦ s ≦ ∞), and waiting room of size N (0 ≦ N ≦ ∞), subject to the assumption of being in a stable stationary condition. Known explicit results for the distribution of the stationary inter-departure intervals {Dn} for both infinite and finite-server systems are given, with some discussion on the use of reversibility in Markovian systems. Some detailed results for certain modified single-server M/G/1 systems are also available. Most of the known second-order properties of {Dn} depend on knowing that the system has either Poisson arrivals or exponential service times. The related stationary point process for which {Dn} is the stationary sequence of the corresponding Palm–Khinchin distribution is introduced and some of its second-order properties described. The final topic discussed concerns identifiability, and questions of characterizations of queueing systems in terms of the output process being a renewal process, or uncorrelated, or infinitely divisible.


Author(s):  
F. P. Kelly

Consider a single-server queueing system with a Poisson arrival process at rate λ and positive service requirements independently distributed with common distribution function B(z) and finite expectationwhere βλ < 1, i.e. an M/G/1 system. When the queue discipline is first come first served, or last come first served without pre-emption, the stationary departure process is Poisson if and only if G = M (i.e. B(z) = 1 − exp (−z/β)); see (8), (4) and (2). In this paper it is shown that when the queue discipline is last come first served with pre-emption the stationary departure process is Poisson whatever the form of B(z). The method used is adapted from the approach of Takács (10) and Shanbhag and Tambouratzis (9).


1995 ◽  
Vol 32 (04) ◽  
pp. 1103-1111 ◽  
Author(s):  
Qing Du

Consider a single-server queue with zero buffer. The arrival process is a three-level Markov modulated Poisson process with an arbitrary transition matrix. The time the system remains at level i (i = 1, 2, 3) is exponentially distributed with rate cα i . The arrival rate at level i is λ i and the service time is exponentially distributed with rate μ i . In this paper we first derive an explicit formula for the loss probability and then prove that it is decreasing in the parameter c. This proves a conjecture of Ross and Rolski's for a single-server queue with zero buffer.


1992 ◽  
Vol 29 (03) ◽  
pp. 699-712 ◽  
Author(s):  
Sid Browne ◽  
Karl Sigman

We study two FIFO single-server queueing models in which both the arrival and service processes are modulated by the amount of work in the system. In the first model, the nth customer's service time, Sn , depends upon their delay, Dn , in a general Markovian way and the arrival process is a non-stationary Poisson process (NSPP) modulated by work, that is, with an intensity that is a general deterministic function g of work in system V(t). Some examples are provided. In our second model, the arrivals once again form a work-modulated NSPP, but, each customer brings a job consisting of an amount of work to be processed that is i.i.d. and the service rate is a general deterministic function r of work. This model can be viewed as a storage (dam) model (Brockwell et al. (1982)), but, unlike previous related literature, (where the input is assumed work-independent and stationary), we allow a work-modulated NSPP. Our approach involves an elementary use of Foster's criterion (via Tweedie (1976)) and in addition to obtaining new results, we obtain new and simplified proofs of stability for some known models. Using further criteria of Tweedie, we establish sufficient conditions for the steady-state distribution of customer delay and sojourn time to have finite moments.


Sign in / Sign up

Export Citation Format

Share Document