average delay
Recently Published Documents


TOTAL DOCUMENTS

574
(FIVE YEARS 259)

H-INDEX

24
(FIVE YEARS 4)

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 643
Author(s):  
Muhammad Bilal Latif ◽  
Feng Liu ◽  
Kai Liu

An autonomous driving environment poses a very stringent requirement for the timely delivery of safety messages in vehicular ad hoc networks (VANETs). Time division multiple access (TDMA)-based medium access control (MAC) protocols are considered a promising solution because of their time-bound message delivery. However, in the event of mobility-caused packet collisions, they may experience an unpredicted and extended delay in delivering messages, which can cause catastrophic accidents. To solve this problem, a distributed TDMA-based MAC protocol with mobility-caused collision mitigation (MCCM-MAC) is presented in this paper. The protocol uses a novel mechanism to detect merging collisions and mitigates them by avoiding subsequent access collisions. One vehicle in the merging collisions retains the time slot, and the others release the slot. The common neighboring vehicles can timely suggest a suitable new time slot for the vacating vehicles, which can avoid access collisions between their packet transmissions. A tie-breakup mechanism is employed to avoid further access collisions. Simulation results show that the proposed protocol reduces packet loss more than the existing methods. Consequently, the average delay between the successfully delivered periodic messages is also reduced.


2022 ◽  
Vol 14 (2) ◽  
pp. 629
Author(s):  
Fu Wang ◽  
Dengjun Gu ◽  
Anqi Chen

Many cities have built expressways to alleviate traffic congestion, among which elevated expressways are the most common form. However, traffic congestion still occurs frequently in the connecting section between the ramp of expressway and the ground intersection. Based on the field traffic survey data, the traffic operation characteristics of vehicles in the connecting section and the main factors affecting the length of the connecting section are analyzed. A combined model for calculating the length of the connecting section between ramp of urban expressway and intersection is proposed. VISSIM is used to simulate the traffic flow under the current and calculated length of the connecting section. The comparison results show that under the calculation length, the travel time, average delay, parking time and queue length are reduced to varying degrees, which verifies the rationality of the calculation model.


2021 ◽  
Vol 6 (2) ◽  
pp. 71-80
Author(s):  
Hairatunnisa Hairatunnisa ◽  
Hapsoro Agung Nugroho ◽  
Relly Margiono

One of the determinants of the quality of magnetic data is continuous data, so we need a data transmission system that can continuously transmit observational data. In this research, a magnetometer communication system design was carried out with the concept of the Internet of Things (IoT) using the MQTT and HTTP protocol, where measurement data in the form of the x-axis, y-axis, z-axis, horizontal components, and total magnetic field components are displayed on the dashboard in real time and continuously. Testing the performance of sending data is done using the Wireshark, it is known that the MQTT protocol has a better delivery quality compared to the HTPP protocol with an average delay value of 0.0120 seconds, an average value of packet length of 54 bytes and a packet loss value of 0.11%, while the HTTP protocol has an average delay value of 0.0257 seconds, an average packet length value of 268.1 bytes and a packet loss value of 0.5%.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Tie Liu ◽  
Chenhua Sun ◽  
Yasheng Zhang

Satellite communication has become an important research trend in the field of communication technology. Low-orbit satellites have always been the focus of extensive attention by scholars due to their wide coverage, strong flexibility, and freedom from geographical constraints. This article introduces some technologies about low-orbit satellites and introduces a routing algorithm DDPG based on machine learning for simulation experiments. The performance of this algorithm is compared with the performance of three commonly used low-orbit satellite routing algorithms, and a conclusion is drawn. The routing algorithm based on machine learning has the smallest average delay, and the average value is 126 ms under different weights. Its packet loss rate is the smallest, with an average of 2.9%. Its throughput is the largest, with an average of 201.7 Mbps; its load distribution index is the smallest, with an average of 0.54. In summary, the performance of routing algorithms based on machine learning is better than general algorithms.


Author(s):  
Arun Kumar. Ch

Abstract: The new challenges introduced in the wireless communication systems by the rapid developments of high-speed trains (HSTs) and more usage of the smartphones. The smart transportation involves the large crowd with smart phones, that requires a more efficient network for communication without disconnection. To achieve that, the handover process, need to be done quickly with respect to the speed of the train. To sustain its session connectivity to the internet, it requires the disconnection from the current access point (APc) to the next access point (APn). IN this project, we use the open flow and open stack protocols for integrating the interface between the infrastructure and the controller. Along with this, the integration of software-defined networking and network function virtualization is also done. The project majorly concentrated on the modification of the routes of the packet flow from one access point to the next required access point with the use of the triggering signal from the train which gives the location of the train. The suggested method works by the transmitting the signal from train to the next access point in advance so that the SDN controller changes the path of the packets to the next access point. The parameters like Signal strength, packet loss, average delay, path delay is evaluated. Along with these parameters the energy dissipation near the network also evaluated. The experimental results are evaluated using MATLAB tool. Keywords: Network Function Virtualization, OpenFlow in SDN, OpenStack, Software Defined Network.


2021 ◽  
Vol 57 (2) ◽  
pp. 025006
Author(s):  
Sigit Ristanto ◽  
Waskito Nugroho ◽  
Eko Sulistya ◽  
Gede B Suparta

Abstract Measuring the 3D position at any time of a given object in real-time automatically and well documented to understand a physical phenomenon is essential. Exploring a stereo camera in developing 3D images is very intriguing since a 3D image perception generated by a stereo image may be reprojected back to generate a 3D object position at a specific time. This research aimed to develop a device and measure the 3D object position in real-time using a stereo camera. The device was constructed from a stereo camera, tripod, and a mini-PC. Calibration was carried out for position measurement in X, Y, and Z directions based on the disparity in the two images. Then, a simple 3D position measurement was carried out based on the calibration results. Also, whether the measurement was in real-time was justified. By applying template matching and triangulation algorithms on those two images, the object position in the 3D coordinate was calculated and recorded automatically. The disparity resolution characteristic of the stereo camera was obtained varied from 132 pixels to 58 pixels for an object distance to the camera from 30 cm to 70 cm. This setup could measure the 3D object position in real-time with an average delay time of less than 50 ms, using a notebook and a mini-PC. The 3D position measurement can be performed in real-time along with automatic documentation. Upon the stereo camera specifications used in this experiment, the maximum accuracy of the measurement in X, Y, and Z directions are ΔX = 0.6 cm, ΔY = 0.2 cm, and ΔZ = 0.8 cm at the measurement range of 30 cm–60 cm. This research is expected to provide new insights in the development of laboratory tools for learning physics, especially mechanics in schools and colleges.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Wei-Jie Xiu ◽  
Li Wang ◽  
Meng-Yang Guo ◽  
Li-Li Zhang ◽  
Qi Zhao

Dedicated bus lanes (DBLs) have been widely utilized to ensure public transport priority. To improve overall road efficiency, various control methods of multiplexing DBL are developed and discussed. In this study, we focus on the control method which is based on the connected-automated vehicle (CAV) technology, and the proposed method is validated by using microscopic traffic simulation. The simulation results show that two proposed control methods of multiplexing DBL can reduce the average delay and the average number of stops and increase the travel speed. In comparison, the real-time control method based on the CAV technology offers better effects than the improved signal light control method.


2021 ◽  
Vol 6 (3) ◽  
pp. 288-296
Author(s):  
Fariz Andri Bakhtiar ◽  
Moh. Wildan Habibi ◽  
Adhitya Bhawiyuga ◽  
Achmad Basuki

IoT devices are constrained in computation and storage, therefore cannot store all long-term obtained data or perform complex computations. Shifting those jobs to cloud platform are feasible, yet rising heterogeneity and security issues. This study proposes an IoT cloud platform to facilitate communication among heterogeneous devices and the cloud while ensuring devices’ validity. It uses publish/subscribe paradigm with an end-to-cloud architecture and HTTP-based auth server. The proposed system has successfully addressed heterogeneity and security issues. Performance tests conclude that the fewer publishers publish data simultaneously, the smaller the delay. Moreover, the system performs better at up to 250 publishers as the average delay is under 1000 ms, compared to 500 publishers that has average delay above 1000 ms. On its scalability, in 250-concurrent-publishers experiment, the system affords 191 publishers responded in under one second with 100% success rate. In 500-concurrent-publishers one, 187 responded in under one second with 99% rate.


Author(s):  
Yen-Hsiang Chen ◽  
Yao Cheng ◽  
Gang-Len Chang

Despite the abundance of studies on signal progression for arterial roads, most existing models for bandwidth maximization cannot concurrently ensure that the resulting delays will be at a desirable level, especially for urban arterials accommodating high turning volume at some major intersections or constrained by limited turning bay length. Extending from those models that aim to address delay minimization in the progression design, this study provides two enhanced progression maximization models for arterials with high turning volumes. The first model aims to select the signal plan that can produce the lowest total signal delays for all movements from the set of non-inferior offsets produced by MAXBAND. Failing to address the impact of potential turning bay spillback at some critical intersections under such a design may significantly degrade the quality of through progression and increase the overall delay. For this reason, the second model proposed in this study offers the flexibility to trade the progression bandwidths within a pre-specified level for the target delay reduction, especially for turning traffic. The evaluation results from both numerical analyses and simulation experiments have shown that both proposed models can produce the desirable level of performance when compared with the two benchmark models, MAXBAND and TRANSYT 16. The second model yielded the lowest average network delay of 117.2 seconds per vehicle (s/veh), compared with 121.7 s/veh with TRANSYT. Moreover, even its average delay of 141.8 s/veh for through vehicles is comparable with that of 141.2 s/veh by MAXBAND, which is designed mainly to benefit through-traffic flows.


Healthcare ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 35
Author(s):  
Lesley Meng ◽  
Krzysztof Laudanski ◽  
Mariana Restrepo ◽  
Ann Huffenberger ◽  
Christian Terwiesch

We estimated the harm related to medication delivery delays across 12,474 medication administration instances in an intensive care unit using retrospective data in a large urban academic medical center between 2012 and 2015. We leveraged an instrumental variables (IV) approach that addresses unobserved confounds in this setting. We focused on nurse shift changes as disruptors of timely medication (vasodilators, antipyretics, and bronchodilators) delivery to estimate the impact of delay. The average delay around a nurse shift change was 60.8 min (p < 0.001) for antipyretics, 39.5 min (p < 0.001) for bronchodilators, and 57.1 min (p < 0.001) for vasodilators. This delay can increase the odds of developing a fever by 32.94%, tachypnea by 79.5%, and hypertension by 134%, respectively. Compared to estimates generated by a naïve regression approach, our IV estimates tend to be higher, suggesting the existence of a bias from providers prioritizing more critical patients.


Sign in / Sign up

Export Citation Format

Share Document