scholarly journals Super-extremal processes and the argmax process

1994 ◽  
Vol 31 (04) ◽  
pp. 958-978 ◽  
Author(s):  
Sidney I. Resnick ◽  
Rishin Roy

In this paper, we develop the probabilistic foundations of the dynamic continuous choice problem. The underlying choice set is a compact metric space E such as the unit interval or the unit square. At each time point t, utilities for alternatives are given by a random function . To achieve a model of dynamic continuous choice, the theory of classical vector-valued extremal processes is extended to super-extremal processes Y = {Yt, t > 0}. At any t > 0, Y t is a random upper semicontinuous function on a locally compact, separable, metric space E. General path properties of Y are discussed and it is shown that Y is Markov with state-space US(E). For each t > 0, Y t is associated. For a compact metric E, we consider the argmax process M = {Mt, t > 0}, where . In the dynamic continuous choice application, the argmax process M represents the evolution of the set of random utility maximizing alternatives. M is a closed set-valued random process, and its path properties are investigated.

1994 ◽  
Vol 31 (4) ◽  
pp. 958-978 ◽  
Author(s):  
Sidney I. Resnick ◽  
Rishin Roy

In this paper, we develop the probabilistic foundations of the dynamic continuous choice problem. The underlying choice set is a compact metric space E such as the unit interval or the unit square. At each time point t, utilities for alternatives are given by a random function . To achieve a model of dynamic continuous choice, the theory of classical vector-valued extremal processes is extended to super-extremal processesY= {Yt, t > 0}. At any t > 0, Yt is a random upper semicontinuous function on a locally compact, separable, metric space E. General path properties of Y are discussed and it is shown that Y is Markov with state-space US(E). For each t > 0, Yt is associated.For a compact metric E, we consider the argmax process M = {Mt, t > 0}, where . In the dynamic continuous choice application, the argmax process M represents the evolution of the set of random utility maximizing alternatives. M is a closed set-valued random process, and its path properties are investigated.


2000 ◽  
Vol 65 (3) ◽  
pp. 1451-1480 ◽  
Author(s):  
Mariagnese Giusto ◽  
Stephen G. Simpson

AbstractLet X be a compact metric space. A closed set K ⊆ X is located if the distance function d(x, K) exists as a continuous real-valued function on X; weakly located if the predicate d(x, K) > r is allowing parameters. The purpose of this paper is to explore the concepts of located and weakly located subsets of a compact separable metric space in the context of subsystems of second order arithmetic such as RCA0, WKL0 and ACA0. We also give some applications of these concepts by discussing some versions of the Tietze extension theorem. In particular we prove an RCA0 version of this result for weakly located closed sets.


2001 ◽  
Vol 119 (2) ◽  
pp. 343-354 ◽  
Author(s):  
Jiang Zhu ◽  
Cheng-Kui Zhong ◽  
Ge-Ping Wang

2009 ◽  
Vol 50 ◽  
Author(s):  
Rimas Banys

A complete separable metric space of functions defined on the positive quadrant of the plane is constructed. The characteristic property of these functions is that at every point x there exist two lines intersecting at this point such that limits limy→x f (y) exist when y approaches x along any path not intersecting these lines. A criterion of compactness of subsets of this space is obtained.


2021 ◽  
Vol 77 (1) ◽  
Author(s):  
Beata Derȩgowska ◽  
Beata Gryszka ◽  
Karol Gryszka ◽  
Paweł Wójcik

AbstractThe investigations of the smooth points in the spaces of continuous function were started by Banach in 1932 considering function space $$\mathcal {C}(\Omega )$$ C ( Ω ) . Singer and Sundaresan extended the result of Banach to the space of vector valued continuous functions $$\mathcal {C}(\mathcal {T},E)$$ C ( T , E ) , where $$\mathcal {T}$$ T is a compact metric space. The aim of this paper is to present a description of semi-smooth points in spaces of continuous functions $$\mathcal {C}_0(\mathcal {T},E)$$ C 0 ( T , E ) (instead of smooth points). Moreover, we also find necessary and sufficient condition for semi-smoothness in the general case.


1995 ◽  
Vol 49 (1) ◽  
pp. 143-162 ◽  
Author(s):  
Masakazu TAMASHIRO

2002 ◽  
Vol 45 (1) ◽  
pp. 60-70 ◽  
Author(s):  
A. N. Dranishnikov ◽  
G. Gong ◽  
V. Lafforgue ◽  
G. Yu

AbstractGromov introduced the concept of uniform embedding into Hilbert space and asked if every separable metric space admits a uniform embedding into Hilbert space. In this paper, we study uniform embedding into Hilbert space and answer Gromov’s question negatively.


1990 ◽  
Vol 33 (3) ◽  
pp. 358-366 ◽  
Author(s):  
B. Schmuland

AbstractWe give conditions under which a vector valued Ornstein Uhlenbeck process has continuous sample paths in lp for 1 ≦ p < ∞. We also show when the space lp is not entered at all, i.e., when it has zero capacity.


Sign in / Sign up

Export Citation Format

Share Document