Semi-smooth Points in Some Classical Function Spaces
AbstractThe investigations of the smooth points in the spaces of continuous function were started by Banach in 1932 considering function space $$\mathcal {C}(\Omega )$$ C ( Ω ) . Singer and Sundaresan extended the result of Banach to the space of vector valued continuous functions $$\mathcal {C}(\mathcal {T},E)$$ C ( T , E ) , where $$\mathcal {T}$$ T is a compact metric space. The aim of this paper is to present a description of semi-smooth points in spaces of continuous functions $$\mathcal {C}_0(\mathcal {T},E)$$ C 0 ( T , E ) (instead of smooth points). Moreover, we also find necessary and sufficient condition for semi-smoothness in the general case.