General necessary conditions for partially observed optimal stochastic controls

1995 ◽  
Vol 32 (04) ◽  
pp. 1118-1137 ◽  
Author(s):  
Xunjing Li ◽  
Shanjian Tang

The partially observed control problem is considered for stochastic processes with control entering into the diffusion and the observation. The maximum principle is proved for the partially observable optimal control. A pure probabilistic approach is used, and the adjoint processes are characterized as solutions of related backward stochastic differential equations in finite-dimensional spaces. Most of the derivation is identified with that of the completely observable case.

1995 ◽  
Vol 32 (4) ◽  
pp. 1118-1137 ◽  
Author(s):  
Xunjing Li ◽  
Shanjian Tang

The partially observed control problem is considered for stochastic processes with control entering into the diffusion and the observation. The maximum principle is proved for the partially observable optimal control. A pure probabilistic approach is used, and the adjoint processes are characterized as solutions of related backward stochastic differential equations in finite-dimensional spaces. Most of the derivation is identified with that of the completely observable case.


2009 ◽  
Vol 06 (07) ◽  
pp. 1221-1233 ◽  
Author(s):  
MARÍA BARBERO-LIÑÁN ◽  
MIGUEL C. MUÑOZ-LECANDA

A geometric method is described to characterize the different kinds of extremals in optimal control theory. This comes from the use of a presymplectic constraint algorithm starting from the necessary conditions given by Pontryagin's Maximum Principle. The algorithm must be run twice so as to obtain suitable sets that once projected must be compared. Apart from the design of this general algorithm useful for any optimal control problem, it is shown how to classify the set of extremals and, in particular, how to characterize the strict abnormality. An example of strict abnormal extremal for a particular control-affine system is also given.


2014 ◽  
Vol 69 (5-6) ◽  
pp. 225-231 ◽  
Author(s):  
Anwar Zeb ◽  
Gul Zaman ◽  
Il Hyo Jung ◽  
Madad Khan

This paper deals with the optimal control problem in the giving up smoking model of fractional order. For the eradication of smoking in a community, we introduce three control variables in the form of education campaign, anti-smoking gum, and anti-nicotive drugs/medicine in the proposed fractional order model. We discuss the necessary conditions for the optimality of a general fractional optimal control problem whose fractional derivative is described in the Caputo sense. In order to do this, we minimize the number of potential and occasional smokers and maximize the number of ex-smokers. We use Pontryagin’s maximum principle to characterize the optimal levels of the three controls. The resulting optimality system is solved numerically by MATLAB.


Author(s):  
Feiyue He

AbstractAn optimal control problem governed by a class of delay semilinear differential equations is studied. The existence of an optimal control is proven, and the maximum principle and approximating schemes are found. As applications, three examples are discussed.


Sign in / Sign up

Export Citation Format

Share Document