On some consequences of the canonical transformation in the Hamiltonian theory of water waves

2009 ◽  
Vol 637 ◽  
pp. 1-44 ◽  
Author(s):  
PETER A. E. M. JANSSEN

We discuss some consequences of the canonical transformation in the Hamiltonian theory of water waves (Zakharov, J. Appl. Mech. Tech. Phys., vol. 9, 1968, pp. 190–194). Using Krasitskii's canonical transformation we derive general expressions for the second-order wavenumber and frequency spectrum and the skewness and the kurtosis of the sea surface. For deep-water waves, the second-order wavenumber spectrum and the skewness play an important role in understanding the so-called sea-state bias as seen by a radar altimeter. According to the present approach but in contrast with results obtained by Barrick & Weber (J. Phys. Oceanogr., vol. 7, 1977, pp. 11–21), in deep water second-order effects on the wavenumber spectrum are relatively small. However, in shallow water in which waves are more nonlinear, the second-order effects are relatively large and help to explain the formation of the observed second harmonics and infra-gravity waves in the coastal zone. The second-order effects on the directional-frequency spectrum are as a rule more important; in particular it is shown how the Stokes-frequency correction affects the shape of the frequency spectrum, and it is also discussed why in the context of the second-order theory the mean-square slope cannot be estimated from time series. The kurtosis of the wave field is a relevant parameter in the detection of extreme sea states. Here, it is argued that in contrast perhaps to one's intuition, the kurtosis decreases while the waves approach the coast. This is related to the generation of the wave-induced current and the associated change in mean sea level.

2020 ◽  
Vol 117 (24) ◽  
pp. 243501
Author(s):  
Anna N. Matsukatova ◽  
Andrey V. Emelyanov ◽  
Anton A. Minnekhanov ◽  
Aleksandr A. Nesmelov ◽  
Artem Yu. Vdovichenko ◽  
...  

ce/papers ◽  
2021 ◽  
Vol 4 (2-4) ◽  
pp. 2249-2254
Author(s):  
Jian‐Wei He ◽  
Lei Zhao ◽  
Yao‐Peng Liu ◽  
Siu‐Lai Chan

1985 ◽  
Vol 11 (4) ◽  
pp. 598-610 ◽  
Author(s):  
Edward Zamble ◽  
G. Marilyn Hadad ◽  
John B. Mitchell ◽  
Tim R. H. Cutmore

1979 ◽  
Vol 100 (1-2) ◽  
pp. 607-624 ◽  
Author(s):  
M. Sluyters-Rehbach ◽  
J. Struys ◽  
J.H. Sluyters

1984 ◽  
Vol 109 (4) ◽  
pp. 398-403 ◽  
Author(s):  
J.C. Evans ◽  
A.Y. Obaid ◽  
C.C. Rowlands

2017 ◽  
Vol 10 (2) ◽  
pp. 333-357
Author(s):  
D.M. OLIVEIRA ◽  
N.A. SILVA ◽  
C.C. RIBEIRO ◽  
S.E.C. RIBEIRO

Abstract In this paper the simplified method to evaluate final efforts using γ z coefficient is studied considering the variation of the second order effects with the height of the buildings. With this purpose, several reinforced concrete buildings of medium height are analyzed in first and second order using ANSYS software. Initially, it was checked that the (z coefficient should be used as magnifier of first order moments to evaluate final second order moments. Therefore, the study is developed considering the relation (final second order moments/ first order moments), calculated for each story of the structures. This moments relation is called magnifier of first order moments, "γ", and, in the ideal situation, it must coincide with the γ z value. However, it is observed that the reason γ /γ z varies with the height of the buildings. Furthermore, using an statistical analysis, it was checked that γ /γ z relation is generally lower than 1.05 and varies significantly in accordance with the considered building and with the presence or not of symmetry in the structure.


Computer ◽  
2012 ◽  
Vol 45 (1) ◽  
pp. 10-11 ◽  
Author(s):  
C. Severance

Sign in / Sign up

Export Citation Format

Share Document