differential cross sections
Recently Published Documents


TOTAL DOCUMENTS

2199
(FIVE YEARS 141)

H-INDEX

76
(FIVE YEARS 6)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tatsuhiko Ogawa ◽  
Yuho Hirata ◽  
Yusuke Matsuya ◽  
Takeshi Kai

AbstractA novel transport algorithm performing proton track-structure calculations in arbitrary materials was developed. Unlike conventional algorithms, which are based on the dielectric function of the target material, our algorithm uses a total stopping power formula and single-differential cross sections of secondary electron production. The former was used to simulate energy dissipation of incident protons and the latter was used to consider secondary electron production. In this algorithm, the incident proton was transmitted freely in matter until the proton produced a secondary electron. The corresponding ionising energy loss was calculated as the sum of the ionisation energy and the kinetic energy of the secondary electron whereas the non-ionising energy loss was obtained by subtracting the ionising energy loss from the total stopping power. The most remarkable attribute of this model is its applicability to arbitrary materials, i.e. the model utilises the total stopping power and the single-differential cross sections for secondary electron production rather than the material-specific dielectric functions. Benchmarking of the stopping range, radial dose distribution, secondary electron energy spectra in liquid water, and lineal energy in tissue-equivalent gas, against the experimental data taken from literature agreed well. This indicated the accuracy of the present model even for materials other than liquid water. Regarding microscopic energy deposition, this model will be a robust tool for analysing the irradiation effects of cells, semiconductors and detectors.


Author(s):  
Marcos Barp ◽  
Felipe Arretche

Interference patterns in the scattering of positrons and electrons by diatomic homonuclear molecules are ab initio calculated. Our results are compared to model potential calculations with incident particles in twisted and plane wave states. All calculations are obtained in the first Born approximation framework. The comparison of the elastic differential cross sections shows how an ab initio description of the electronic molecular structure influence the interference minima structure. The origin of such patterns are also discussed.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
◽  
G. Aad ◽  
B. Abbott ◽  
D. C. Abbott ◽  
A. Abed Abud ◽  
...  

Abstract A measurement of prompt photon-pair production in proton-proton collisions at $$ \sqrt{s} $$ s = 13 TeV is presented. The data were recorded by the ATLAS detector at the LHC with an integrated luminosity of 139 fb−1. Events with two photons in the well-instrumented region of the detector are selected. The photons are required to be isolated and have a transverse momentum of $$ {p}_{\mathrm{T}{,}_{\gamma 1(2)}} $$ p T , γ 1 2 > 40 (30) GeV for the leading (sub-leading) photon. The differential cross sections as functions of several observables for the diphoton system are measured and compared with theoretical predictions from state-of-the-art Monte Carlo and fixed-order calculations. The QCD predictions from next-to-next-to-leading-order calculations and multi-leg merged calculations are able to describe the measured integrated and differential cross sections within uncertainties, whereas lower-order calculations show significant deviations, demonstrating that higher-order perturbative QCD corrections are crucial for this process. The resummed predictions with parton showers additionally provide an excellent description of the low transverse-momentum regime of the diphoton system.


2021 ◽  
Vol 104 (7) ◽  
Author(s):  
D. V. Kirpichnikov ◽  
H. Sieber ◽  
L. Molina Bueno ◽  
P. Crivelli ◽  
M. M. Kirsanov

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. Salimi ◽  
O. Kakuee ◽  
S. F. Masoudi ◽  
H. Rafi-kheiri ◽  
E. Briand ◽  
...  

AbstractThe cross-sections of deuteron-induced nuclear reactions suitable for ion beam analysis, measured in different laboratories, are often significantly different. In the present work, differential cross-sections of 27Al(d,p) and 27Al(d,α) reactions were measured, and the cross sections benchmarked with thick target spectra obtained from pure aluminium for the first time in two independent laboratories. The 27Al(d,p) and (d,α) differential cross-sections were measured between 1.4 and 2 MeV at scattering angles of 165°, 150°, and 135° in the VDGT laboratory in Tehran (Iran), and the same measurements for detector angle of 150° were repeated from scratch, including target making, with independent equipment on the SAFIR platform at INSP in Paris (France). The results of these two measurements at 150° are in good agreement, and for the first time a fitted function is proposed to describe the Al-cross sections for which no suitable theoretical expression exists. The obtained differential cross-sections were validated through benchmarking, by fitting with SIMNRA deuteron-induced particle spectra obtained from a high purity bulk Al target at both labs for deuteron incident energies between 1.6 and 2 MeV. The thick target spectra are well-reproduced. The evaluated and benchmarked cross sections have been uploaded to the ion beam analysis nuclear data library database (www-nds.iaea.org/ibandl/).


Sign in / Sign up

Export Citation Format

Share Document