A boundary layer theorem, with applications to rotating cylinders

1957 ◽  
Vol 2 (1) ◽  
pp. 89-99 ◽  
Author(s):  
M. B. Glauert

If, in a given solution of the boundary layer equations, the position of the wall is varied, then additional solutions of the boundary layer equations may be deduced. The theorem considers the nature of such solution, for the general case of time-dependent three-dimensional compressible flow.Applications of the theorem arise in several different fields, and it is shown that useful quantitative results can often be obtained with the minimum of calculation. In this paper, chief attention is focused on the case of a rotating circular cylinder, and explicit formulae are developed for the skin friction, valid for sufficiently low rotational speeds. The important results which the theorem gives for slip flow have been noted by previous extenions to these previous treatments are made. Other applications of the theorem are briefly mentioned.

Starting with the three-dimensional equations of classical isotropic elasticity, equations are obtained for boundary-layer effects near any smooth edge of an elastic shell. Solutions of these equations are combined with solutions of the equations of the 'interior’ problem so that any specified edge conditions in terms of stresses can be satisfied. The usual Kirchhoff stress boundary conditions for the major terms of the interior stresses are deduced from the analysis.


This paper considers the two-dimensional flow past a circular cylinder immersed in a uniform stream, when the cylinder rotates about its axis so fast that separation in suppressed. The solution of the flow in the boundary layer on the cylinder is obtained in the form of a power series in the ratio of the stream velocity to the cylinder's peripheral velocity, and expressions are deduced for the value of the circulation and the torque on the cylinder. The terms calculated explicitly are sufficient to give reliable numerical values over the whole range of rotational speeds for which the postulate of non-separating flow is justifiable. The previously accepted theory, due to Prandtl, predicted that the circulation should not exceed a certain limit, while the present theory indicates that the circulation increases indefinitely with increase of rotaional speed. Strong arguments against the older theory are put forward, but the experimental evidence available is inconclusive.


Sign in / Sign up

Export Citation Format

Share Document