Abstract
Stiff membranes on soft substrates may wrinkle and fold during compression1-11, but the strong post-buckling nonlinearity3,12 and the propensity of overall bending of these systems4,9,11 under large compression make the intriguing morphological evolution ill-controlled and less understood. Here, we present a simple peeling strategy that controllably makes stiff nanomembranes on soft microfilms wrinkled, then folded with a preset period, and ultimately fractured into regular ribbons. The fold and fracture periods exhibit a quantized, stepped dependence on the microfilm thickness, with the period doubled per step. The controlled wrinkle-to-fold-to-fractures transitions can be quantified by both computations and a scaling law, showing generality to different forms of compressive loading. This quantized wrinkle evolution deepens our understanding of complex behaviors of such natural and artificial systems as cerebral cortexes, skins, and coating materials, and opens a way to advanced manufacturing by fracturing large-area nanomembranes into uniformly shaped microflakes.