scholarly journals Lee waves in a stratified flow Part 3. Semi-elliptical obstacle

1969 ◽  
Vol 35 (3) ◽  
pp. 481-496 ◽  
Author(s):  
Herbert E. Huppert ◽  
John W. Miles

The stratified shear flow over a two-dimensional obstacle of semi-elliptical crosssection is considered. The shear flow is assumed to be inviscid with constant upstream values of the density gradient and dynamic pressure (Long's model). Two complete sets of lee-wave functions, each of which satisfies the condition of no upstream reflexion, are determined in elliptic co-ordinates for ε ≤ 1 and ε ≥ 1, where ε is the ratio of height to half-width of the obstacle. These functions are used to determine the lee-wave field produced by, and the consequent drag on, a semi-elliptical obstacle as functions of ε and the reduced frequency (reciprocal Froude number) within the range of stable flow. The reduced frequency at which static instability first occurs is calculated as a function of ε.

1968 ◽  
Vol 32 (3) ◽  
pp. 549-567 ◽  
Author(s):  
John W. Miles

The lee-wave amplitudes and wave drag for a thin barrier in a two-dimensional stratified flow in which the upstream dynamic pressure and density gradient are constant (Long's model) are determined as functions of barrier height and Froude number for a channel of finite height and for a half-space. Variational approximations to these quantities are obtained and validated by comparison with the earlier results of Drazin & Moore (1967) for the channel and with the results of an exact solution for the half-space, as obtained through separation of variables. An approximate solution of the integral equation for the channel also is obtained through a reduction to a singular integral equation of potential theory. The wave drag tends to increase with decreasing wind speed, but it seems likely that the flow is unstable in the region of high drag. The maximum attainable drag coefficient consistent with stable lee-wave formation appears to be roughly two and almost certainly less than three.


1978 ◽  
Vol 100 (4) ◽  
pp. 664-675 ◽  
Author(s):  
S. Fleeter ◽  
R. L. Jay ◽  
W. A. Bennett

An experimental investigation was conducted to determine the fluctuating pressure distribution on a stationary vane row, with the primary source of excitation being the wakes from the upstream rotor blades. This was accomplished in a large scale, low speed, single stage research compressor. The forcing function, the velocity defect created by the rotor wakes, was measured with a crossed hot-wire probe. The aerodynamic response on the vanes was measured by means of flush mounted high response dynamic pressure transducers. The dynamic data were analyzed to determine the chordwise distribution of the dynamic pressure coefficient and aerodynamic phase lag as referenced to a transverse gust at the vane leading edge. Vane suction and pressure surface data as well as the pressure difference across the vane were obtained for reduced frequency values ranging from 3.65 to 16.80 and for an incidence angle range of 35.5 deg. The pressure difference data were correlated with a state-of-the-art aerodynamic cascade transverse gust analysis. The correlation was quite good for all reduced frequency values for small values of incidence. For the more negative incidence angle data points, it was shown that a convected wake phenomena not modeled in the analysis existed. Both the first and second harmonic unsteady pressure differential magnitude data decrease in the chordwise direction. The second harmonic magnitude data attains a value very nearly zero at the vane trailing edge transducer location, while the first harmonic data is still finite, albeit small, at this location. That the magnitude of the unsteady pressure differential data approaches zero near to the trailing edge, particularly the second harmonic data which has reduced frequency values to 16.8, is significant in that it reflects upon the validity of the Kutta condition for unsteady flows.


Sign in / Sign up

Export Citation Format

Share Document