wave drag
Recently Published Documents


TOTAL DOCUMENTS

549
(FIVE YEARS 99)

H-INDEX

47
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Christoph Schär

<p>Currently major efforts are underway toward refining the horizontal grid spacing of climate models to about 1 km, using both global and regional climate models. There is the well-founded hope that this increase in resolution will improve climate models, as it enables replacing the parameterizations of moist convection and gravity-wave drag by explicit treatments. Results suggest that this approach has a high potential in improving the representation of the water cycle and extreme events, and in reducing uncertainties in climate change projections. The presentation will provide examples of these developments in the areas of heavy precipitation and severe weather events over Europe. In addition, it will be argued that km-resolution is a promising approach toward constraining uncertainties in global climate change projections, due to improvements in the representation of tropical and subtropical clouds. Work in the latter area has only recently started and results are highly encouraging.</p> <p>For a few years there have also been attempts to make km-resolution available in global climate models for decade-long simulations. Developing this approach requires a concerted effort. Key challenges include the exploitation of the next generation hardware architectures using accelerators (e.g. graphics processing units, GPUs), the development of suitable approaches to overcome the output avalanche, and the maintenance of the rapidly-developing model source codes on a number of different compute architectures. Despite these challenges, it will be argued that km-resolution GCMs with a capacity to run at 1 SYPD (simulated year per day), might be much closer than commonly believed.</p> <p>The presentation is largely based on a recent collaborative paper (Schär et al., 2020, BAMS, https://doi.org/10.1175/BAMS-D-18-0167.1) and ongoing studies. It will also present aspects of a recent Swiss project in this area (EXCLAIM, https://exclaim.ethz.ch/).</p>


Author(s):  
S. Rajat Singh ◽  
Y.D. Dwivedi

The transonic area rule was first implemented in the 1950s. It is an important concept related to the drag on an aircraft or other body in transonic and supersonic flight which states that two airplanes with the same longitudinal cross-sectional area distribution have the same wave drag, independent of how the area is distributed laterally. A swept back delta wing increases the critical Mach number of the wing and performs well at low speeds, as a result of unique swirling vortices that form on the upper surface of the wing. BOOM Supersonic plans to bring back Supersonic Commercial aircrafts by implementing these modifications in the famous Concorde. In this paper two aircraft designs inspired by Concorde and BOOM Overture are compared using ANSYS Fluent. These were designed in CATIA with changes in fuselage dimensions, wing configuration and engine configuration. The lift to drag ratio of both the designs are calculated and compared. Pressure contours, velocity vectors, vector pathlines, turbulence pathlines and pressure pathlines are also compared. The results show that the design with the implementation of transonic area rule and swept back delta wing has a better Lift to Drag ratio when compared to the design with a wide fuselage and a delta wing design.


2021 ◽  
Author(s):  
Georg Sebastian Voelker ◽  
Gergely Bölöni ◽  
Young-Ha Kim ◽  
Ulrich Achatz

<p>Subgrid-scale internal gravity waves (IGWs) are important distributors of energy in a stratified atmosphere. While they are mostly excited at lower altitudes their effects are most important between the upper troposphere to the mesopause (~85km). During propagation–both in the vertical and the horizontal–nonlinear IGWs can exert a wave drag on the mean winds, interact with the mean potential temperature, and mix atmospheric tracers such as aerosols or greenhouse gases.</p> <p>In state-of-the art weather prediction models IGWs are typically parametrized using the single-column and the steady-state assumptions. These parametrizations take into account dissipative effects of IGWs but neglect their horizontal propagation and all of their transient interaction mechanisms such as direct wave-mean-flow interactions. However, the latter have been shown to contribute to IGW dynamics in various idealized studies.</p> <p>Here we present advances of the use of the transient Multi Scale Gravity Wave Model (MS-GWaM) in the upper atmosphere model UA-ICON. Based on Lagrangian ray-tracing the parametrization includes various non-orographic wave sources, transient propagation in both the horizontal and vertical directions, direct wave-mean-flow interactions and wave breaking. The resulting setup satisfactorily reproduces the observed mean-wind and potential temperature climatology and already shows promising insights into the details of the role of IGWs in the atmosphere.</p>


2021 ◽  
Author(s):  
Dominika Hájková ◽  
Petr Šácha ◽  
Petr Pišoft ◽  
Roland Eichinger

<p>Internal gravity waves (GWs) are a naturally occurring and intermittent phenomenon in the atmosphere. GWs can propagate horizontally and vertically and are important for atmospheric dynamics, influencing the atmospheric thermal and dynamical structure. Research on GWs is connected with some of the most challenging issues of Earth climate and atmospheric science. Consideration of GW-related processes is necessary for a proper description and modelling of the middle and upper atmosphere. However, as GWs exist on scales from a few to thousands of kilometers, they cannot be fully resolved by general circulation models (GCMs) and hence have to be parameterized. Although recently satellite and reanalysis datasets with improved resolution and novel analysis methods together with high-resolution atmospheric models have been tightening the constraints for GW parameterizations in GCMs, the parameterized GW effects still bear a significant margin of uncertainty.</p> <p>To quantify this uncertainty, we analyze the three-dimensional distribution and interannual variability of orographic gravity wave drag (OGWD) in chemistry-climate model simulations. For this, we use a set of AMIP simulations produced within the CMIP6 activity. In particular, we focus on the intermodel spread in the vertical and horizontal OGWD distribution. The different models generaly agree on the areas of the OGWD hotspots. However, in all these regions we find considerable intermodel differences in OGWD magnitude as well as in the altitude of the strongest GW dissipation. In this presentation, we show our findings and discuss possible explanations for the intermodel differences, like different parametrization schemes and choices of tunable parameters.</p>


2021 ◽  
Author(s):  
Petr Šácha ◽  
Aleš Kuchař ◽  
Christoph Jacobi ◽  
Petr Pišoft ◽  
Roland Eichinger ◽  
...  

<div class="page" title="Page 1"> <div class="layoutArea"> <div class="column"> <p>In the extratropical atmosphere, Rossby waves (RWs) and internal gravity waves (GWs) propagating from the troposphere mediate a coupling with the middle atmosphere by influencing the dynamics herein. In current generation chemistry-climate models (CCMs), GWs are usually smaller than the model resolution and the majority of their spectrum therefore must be parameterized. From observations, we know that GWs are intermittent and asymmetrically distributed around the globe, which holds to some extent also for the parameterized GW drag (GWD) (in particular for orographic GWD (oGWD)). The GW parameterizations in CCMs are usually tuned to mitigate biases in the zonal mean climatology of particular quantities, but the complex interaction of parameterized GWs with the large- scale circulation and resolved waves in the models remains to date poorly understood.</p> <p>This presentation will combine observational evidence, idealized modeling and dynamical analysis of a CCM output to study both the short-term and long-term model response to the oGWD. Our results demonstrate that the oGW-resolved dynamics interaction is a complex two-way process, with the most prominent oGWD impact being the alteration of propagation of planetary-scale Rossby waves on a time-scale of a few days. The conclusions give a novel perspective on the importance of oGWD for the stratospheric polar vortex and atmospheric transport studies outlining potential foci of future research.</p> </div> </div> </div>


2021 ◽  
Author(s):  
Sina Mehrdad ◽  
Khalil Karami ◽  
Dörthe Handorf ◽  
Johannes Quaas ◽  
Ines Höschel ◽  
...  

<p>The global warming has been observed to be more severe in the Arctic compared to the rest of the world. This enhanced warming i.e. Arctic Amplification is not just the result of local feedback processes in the Arctic. The stratospheric pathways of Arctic-midlatitude linkages and large-scale dynamical processes can contribute to the Arctic Amplification. The polar stratospheric dynamics crucially depends on the atmospheric waves at all scales. The winter polar vortex can be disturbed by gravity waves in the middle atmosphere. To investigate the sensitivity of the polar vortex dynamics, large-scale dynamical processes, and the stratospheric pathways of the Arctic-midlatitude linkages to the modification of gravity wave drag, we conduct sensitivity experiments using the global atmospheric model ICON-NWP (ICOsahedral Nonhydrostatic Model for Numerical Weather Prediction). These sensitivity experiments are performed by imposing a repeated annual cycle of the year 1986 for sea surface temperatures and sea ice as lower boundary conditions and for greenhouse gas concentrations as external forcing. This year is selected as both El-Nino Southern Oscillation and Pacific decadal oscillation were in their neutral phase and no explosive volcanic eruption has occurred. Hence, lower boundary and external forcing conditions in this year can serve as a useful proxy for the multi-year mean condition and an estimate of its internal variability. We performed simulations where in the control simulation the sub-grid parameterization scheme for both orographic and non-orographic gravity wave drags are switched on. The other two experiments are identical to the control simulation except that either orographic or non-orographic gravity wave drags are switched off.</p> <p>Recently, deep learning has extraordinarily progressed our ability to recognize complex patterns in big datasets. Deep neural networks have shown great capabilities to capture the dynamical process of the atmosphere. Applying deep learning algorithms on experiments’ results, the impact of gravity wave drag modifications on large-scale mechanisms of the Arctic Amplification will be analyzed. Special emphasis will be put on the effects of gravity wave drag modifications on the polar vortex dynamics.</p>


2021 ◽  
Author(s):  
Khalil Karami ◽  
Sebastian Borchert ◽  
Roland Eichinger ◽  
Christoph Jacobi ◽  
Ales Kuchar ◽  
...  

<p>The gravity waves play a crucial role in driving and shaping the middle atmospheric circulation. The Upper-Atmospheric extension of the ICOsahedral Non-hydrostatic (UA-ICON) general circulation model was recently developed with satisfying performances in both idealized test cases and climate simulations, however the sensitivity of the circulation to the parameterized orographic and non-orographic gravity wave drag remains largely unexplored. Using UA-ICON and ICON-NWP, the sensitivity of the dynamics and circulation to both orographic and non-orographic parameterized gravity waves effects are investigated. ICON-NWP stands for the numerical-weather prediction mode of the ICON model (see Zängl et al, 2015, QJRMetSoc), with a model top at about 80 km altitude. The UA-ICON mode differs from ICON-NWP in deep-atmosphere dynamics (instead of shallow-atmosphere dynamics) and upper-atmosphere physics parameterizations being switched on. In addition, the model top is at about 150 km.</p> <p>The sensitivity experiments involve employing repeated annual cycle sea surface temperatures, sea ice, and greenhouse gases under year 1988. This year is selected as both El-Nino southern oscillation and pacific decadal oscillation are in their neutral phase and no explosive volcano eruption has occurred and hence conditions in this year can serve as a useful proxy for the multi-year mean condition and an estimate of its internal variability. For both UA-ICON and ICON-NWP, we perform simulations where in the control (CTL) simulation both orographic and non-orographic gravity wave drags are switched on. The other two experiments are identical to the control simulation except that either orographic (OGWD-off) or b) non-orographic (NGWD-off) gravity wave drags are switched off. The analysis include comparisons between CTL and OGWD-off and NGWD-off simulations and include wave-mean flow interaction diagnostics (Eliassen-Palm flux and its divergence and refractive index of Rossby waves) and mass stream function of the Brewer-Dobson circulation. We also investigate the sudden stratospheric warming frequency and polar vortex morphology in order to understand whether a missing gravity wave forcing can further amplify or curtail the effects of future climate. We present our goal, method as well as first results and discuss possible further analysis. </p>


MAUSAM ◽  
2021 ◽  
Vol 57 (4) ◽  
pp. 591-596
Author(s):  
NARESH KUMAR ◽  
NASEEM AHMAD ◽  
S. K. ROY BHOWMIK ◽  
H. R. HATWAR

lkj & Å¡pkbZ ds lkFk ok;q ds jsf[kdh; :Ik ls c<+us vkSj fLFkjrk dks vifjorZuh; ekurs gq, f}foeh; ioZrh; vojks/k esa fLFkj Lrfjr ok;q&izokg okys jsf[kdh; nzoLFkSfrd  fun’kZ dk bl 'kks/k&i= esa mi;ksx fd;k x;k gSA vle&cekZ dh igkfM+;ksa ds vkSj Hkkjr ds if’peh ?kkV ds ioZrh; ok;qjks/k vkSj ioZrh; vfHkokgksa ds fo’ys"k.kkRed vk¡dM+s izkIr fd, x, gSaA vle&cekZ dh igkfM+;ksa ds nksuksa fjtksa ds ioZrh; ok;qjks/k ds lkekU; vk¡dM+s Hkh izkIr fd, x, gaSA  A linear hydrostatic model of a stably stratified air-stream flow over a two-dimensional orographic barrier is considered assuming wind increases linearly with height and stability is constant. Analytical expressions for mountain drags and momentum fluxes are obtained for Assam-Burma hills as well as Western Ghats of India. The general expression for mountain drag also obtained for both the ridges of Assam-Burma hills.


2021 ◽  
Vol 116 ◽  
pp. 102861
Author(s):  
Xinwang Liu ◽  
Weiwen Zhao ◽  
Decheng Wan

Sign in / Sign up

Export Citation Format

Share Document