scholarly journals Hydromechanics of low-Reynolds-number flow. Part 4. Translation of spheroids

1976 ◽  
Vol 75 (4) ◽  
pp. 677-689 ◽  
Author(s):  
Allen T. Chwang ◽  
Theodore Y. Wu

The problem of a uniform transverse flow past a prolate spheroid of arbitrary aspect ratio at low Reynolds numbers has been analysed by the method of matched asymptotic expansions. The solution is found to depend on two Reynolds numbers, one based on the semi-minor axis b, Rb = Ub/v, and the other on the semi-major axis a, Ra = Ua/v (U being the free-stream velocity at infinity, which is perpendicular to the major axis of the spheroid, and v the kinematic viscosity of the fluid). A drag formula is obtained for small values of Rb and arbitrary values of Ra. When Ra is also small, the present drag formula reduces to the Oberbeck (1876) result for Stokes flow past a spheroid, and it gives the Oseen (1910) drag for an infinitely long cylinder when Ra tends to infinity. This result thus provides a clear physical picture and explanation of the ‘Stokes paradox’ known in viscous flow theory.

2010 ◽  
Vol 1 (1-2) ◽  
pp. 15-20 ◽  
Author(s):  
B. Bolló

Abstract The two-dimensional flow around a stationary heated circular cylinder at low Reynolds numbers of 50 < Re < 210 is investigated numerically using the FLUENT commercial software package. The dimensionless vortex shedding frequency (St) reduces with increasing temperature at a given Reynolds number. The effective temperature concept was used and St-Re data were successfully transformed to the St-Reeff curve. Comparisons include root-mean-square values of the lift coefficient and Nusselt number. The results agree well with available data in the literature.


AIAA Journal ◽  
1972 ◽  
Vol 10 (10) ◽  
pp. 1381-1382
Author(s):  
CLARENCE W. KITCHENS ◽  
CLARENCE C. BUSH

Sign in / Sign up

Export Citation Format

Share Document