scholarly journals The energy decay in self-preserving isotropic turbulence revisited

1992 ◽  
Vol 241 ◽  
pp. 645-667 ◽  
Author(s):  
Charles G. Speziale ◽  
Peter S. Bernard

The assumption of self-preservation permits an analytical determination of the energy decay in isotropic turbulence. Batchelor (1948), who was the first to carry out a detailed study of this problem, based his analysis on the assumption that the Loitsianskii integral is a dynamic invariant – a widely accepted hypothesis that was later discovered to be invalid. Nonetheless, it appears that the self-preserving isotropic decay problem has never been reinvestigated in depth subsequent to this earlier work. In the present paper such an analysis is carried out, yielding a much more complete picture of self-preserving isotropic turbulence. It is proven rigorously that complete self-preserving isotropic turbulence admits two general types of asymptotic solutions: one where the turbulent kinetic energy K ∼ t−1 and one where K ∼ t−α with an exponent α > 1 that is determined explicitly by the initial conditions. By a fixed-point analysis and numerical integration of the exact one-point equations, it is demonstrated that the K ∼ t−1 power law decay is the asymptotically consistent high-Reynolds-number solution; the K ∼ t−α decay law is only achieved in the limit as t → ∞ and the turbulence Reynolds number Rt vanishes. Arguments are provided which indicate that a t−1 power law decay is the asymptotic state toward which a complete self-preserving isotropic turbulence is driven at high Reynolds numbers in order to resolve an O(R1½) imbalance between vortex stretching and viscous diffusion. Unlike in previous studies, the asymptotic approach to a complete self-preserving state is investigated which uncovers some surprising results.

The final period of decay of a turbulent motion occurs when the effects of inertia forces are negligible. Under these conditions the instantaneous velocity distribution in the turbulence field may be solved as an initial value problem. It is shown that homogeneous turbulence tends to an asymptotic statistical state which is independent of the initial conditions. In this asymptotic state the energy of turbulence is proportional to t -5/2 and the longitudinal double-velocity correlation coefficient for two points distance r apart is e -r2/svt , where t is the time of decay. The asymptotic time-interval correlation coefficient is found to be different from unity for very large time intervals only, showing the aperiodic character of the motion. The whole field of motion comes gradually to rest, smaller eddies decaying more rapidly than larger eddies, and the above stable eddy distribution is established when only the largest eddies of the original turbulence remain. Relevant measurements have been made in the field of isotropic turbulence downstream from a grid of small mesh. The above energy decay and space-interval correlation relations are found to be valid at distances from the grid greater than 400-mesh lengths and at a mesh Reynolds number of 650. The duration of the transitional period, in which the energy decay law is changing from that appropriate to the initial period of decay to the above asymptotic law, increases very rapidly with R M . There is a brief discussion of the criterion for the existence of final period decay, although clarification must wait until the existence and termination of the initial period of decay are better understood.


2011 ◽  
Vol 668 ◽  
pp. 351-362 ◽  
Author(s):  
MARCELLO MELDI ◽  
PIERRE SAGAUT ◽  
DIDIER LUCOR

A stochastic eddy-damped quasi-normal Markovian (EDQNM) approach is used to investigate self-similar decaying isotropic turbulence at a high Reynolds number (400 ≤ Reλ ≤ 104). The realistic energy spectrum functional form recently proposed by Meyers & Menevau (Phys. Fluids, vol. 20, 2008, p. 065109) is generalized by considering some of the model constants as random parameters, since they escape measure in most experimental set-ups. The induced uncertainty on the solution is investigated, building response surfaces for decay power-law exponents of usual physical quantities. Large-scale uncertainties are considered, the emphasis being put on Saffman and Batchelor turbulences. The sensitivity of the solution to initial spectrum uncertainties is quantified through probability density functions of the decay exponents. It is observed that the initial spectrum shape at very large scales governs the long-time evolution, even at a high Reynolds number, a parameter which is not explicitly taken into account in many theoretical works. Therefore, a universal asymptotic behaviour in which kinetic energy decays as t−1 is not detected. However, this decay law is observed at finite Reynolds numbers with low probability for some initial conditions.


2019 ◽  
Vol 9 (4) ◽  
Author(s):  
Kartik P. Iyer ◽  
Katepalli R. Sreenivasan ◽  
P. K. Yeung

2014 ◽  
Vol 747 ◽  
pp. 518-544 ◽  
Author(s):  
Jan Östh ◽  
Bernd R. Noack ◽  
Siniša Krajnović ◽  
Diogo Barros ◽  
Jacques Borée

AbstractWe investigate a hierarchy of eddy-viscosity terms in proper orthogonal decomposition (POD) Galerkin models to account for a large fraction of unresolved fluctuation energy. These Galerkin methods are applied to large eddy simulation (LES) data for a flow around a vehicle-like bluff body called an Ahmed body. This flow has three challenges for any reduced-order model: a high Reynolds number, coherent structures with broadband frequency dynamics, and meta-stable asymmetric base flow states. The Galerkin models are found to be most accurate with modal eddy viscosities as proposed by Rempfer & Fasel (J. Fluid Mech., vol. 260, 1994a, pp. 351–375; J. Fluid Mech. vol. 275, 1994b, pp. 257–283). Robustness of the model solution with respect to initial conditions, eddy-viscosity values and model order is achieved only for state-dependent eddy viscosities as proposed by Noack, Morzyński & Tadmor (Reduced-Order Modelling for Flow Control, CISM Courses and Lectures, vol. 528, 2011). Only the POD system with state-dependent modal eddy viscosities can address all challenges of the flow characteristics. All parameters are analytically derived from the Navier–Stokes-based balance equations with the available data. We arrive at simple general guidelines for robust and accurate POD models which can be expected to hold for a large class of turbulent flows.


1994 ◽  
Vol 116 (4) ◽  
pp. 677-684 ◽  
Author(s):  
M. D. Su ◽  
R. Friedrich

Large eddy simulations have been performed in straight ducts with square cross section at a global Reynolds number of 49,000 in order to predict the complicated mean and instantaneous flow involving turbulence-driven secondary motion. Isotropic grid systems were used with spatial resolutions of 256 * 642. The secondary flow not only turned out to develop extremely slowly from its initial conditions but also to require fairly high resolution. The obtained statistical results are compared with measurements. These results show that the large eddy simulation (LES) is a powerful approach to simulate the complex turbulence flow with high Reynolds number. Streaklines of fluid particles in the duct show the secondary flow clearly. The database obtained with LES is used to examine a statistical turbulence model and describe the turbulent vortex structure in the fully developed turbulent flow in a straight duct.


2006 ◽  
Vol 73 (6) ◽  
Author(s):  
P. Burattini ◽  
P. Lavoie ◽  
A. Agrawal ◽  
L. Djenidi ◽  
R. A. Antonia

Sign in / Sign up

Export Citation Format

Share Document