ahmed body
Recently Published Documents


TOTAL DOCUMENTS

152
(FIVE YEARS 62)

H-INDEX

18
(FIVE YEARS 1)

2022 ◽  
Author(s):  
Parth Y. Patel ◽  
Jia H. Liu ◽  
Vladimir V. Vantsevich ◽  
Roy P. Koomullil

2021 ◽  
Vol 932 ◽  
Author(s):  
Yiqing Li ◽  
Wenshi Cui ◽  
Qing Jia ◽  
Qiliang Li ◽  
Zhigang Yang ◽  
...  

We address a challenge of active flow control: the optimization of many actuation parameters guaranteeing fast convergence and avoiding suboptimal local minima. This challenge is addressed by a new optimizer, called the explorative gradient method (EGM). EGM alternatively performs one exploitive downhill simplex step and an explorative Latin hypercube sampling iteration. Thus, the convergence rate of a gradient based method is guaranteed while, at the same time, better minima are explored. For an analytical multi-modal test function, EGM is shown to significantly outperform the downhill simplex method, the random restart simplex, Latin hypercube sampling, Monte Carlo sampling and the genetic algorithm. EGM is applied to minimize the net drag power of the two-dimensional fluidic pinball benchmark with three cylinder rotations as actuation parameters. The net drag power is reduced by 29 % employing direct numerical simulations at a Reynolds number of $100$ based on the cylinder diameter. This optimal actuation leads to 52 % drag reduction employing Coanda forcing for boat tailing and partial stabilization of vortex shedding. The price is an actuation energy corresponding to 23 % of the unforced parasitic drag power. EGM is also used to minimize drag of the $35^\circ$ slanted Ahmed body employing distributed steady blowing with 10 inputs. 17 % drag reduction are achieved using Reynolds-averaged Navier–Stokes simulations at the Reynolds number $Re_H=1.9 \times 10^5$ based on the height of the Ahmed body. The wake is controlled with seven local jet-slot actuators at all trailing edges. Symmetric operation corresponds to five independent actuator groups at top, middle, bottom, top sides and bottom sides. Each slot actuator produces a uniform jet with the velocity and angle as free parameters, yielding 10 actuation parameters as free inputs. The optimal actuation emulates boat tailing by inward-directed blowing with velocities which are comparable to the oncoming velocity. We expect that EGM will be employed as efficient optimizer in many future active flow control plants as alternative or augmentation to pure gradient search or explorative methods.


2021 ◽  
Vol 13 (12) ◽  
pp. 168781402110668
Author(s):  
Haichao Zhou ◽  
Qingyun Chen ◽  
Runzhi Qin ◽  
Lingxin Zhang ◽  
Huiyun Li

As vehicle speed increases, the aerodynamic drag reduction becomes increasingly significant. The aim of this paper is to find out the effects of the wheelhouse shapes on the aerodynamics of an Ahmed body with a 35 slant angle. In this paper, based on the detached-eddy simulation method, the effects of the three classic different wheelhouse on the aerodynamic performance and near wake of the Ahmed body are presented. The mesh resolution and methodology are validated against the published test results. The results show that the front wheelhouse has a significant impact on the aerodynamic performance of the Ahmed body, leading to different aerodynamic drag forces and flow fields. Enlarging the wheelhouse cavity volume could result in a gradual increase in aerodynamic drag coefficients, the ratio of the wheelhouse cavity volume increased by 2.9% and 9.8%, the drag coefficients increased by 2.5% and 4.5% respectively. The increase in aerodynamic drag was primarily caused by flow separation in the large cavity volume wheelhouse.


Author(s):  
Virendra Talele ◽  
Nitish Karambali ◽  
Akshay Savekar ◽  
Sarthak Khatod ◽  
Sachin Pawar

Aerodynamic improvements primarily result in decreased fuel usage and carbon dioxide emissions into the atmosphere. Numerous governments support ongoing aerodynamics development initiatives as a means of addressing the energy problem and reducing air pollution, Ahmed body investigation helps research to investigate versatile approaches and flexibility of design. This study is carried over a generic design of Ahmed body model. We attempted a passive arrangement system to reduce drag coefficient with a correlation of cases such as in primary objective varying parameter of slant angle from 20∘ to 30∘ proposed to monitor the behavior of drag coefficient. Once we finalized the optimum slant angle, which gives a lower drag coefficient, the next proposed configuration is to vary passive arrangement between lower and upper blend length to see the deflection of the boundary layer in correlation with the drag coefficient. The final topology is selected, which gives the lowest drag coefficient. The post-process correlation study was proposed by using an artificial neural network (ANN) scheme. The ANN model is developed between an achieved set of data from CFD investigation, ANN model indicates a strong correlation between the varying percentage of blend angle and increment percentage of the drag coefficient.


2021 ◽  
Vol 927 ◽  
Author(s):  
Bérengère Podvin ◽  
Stéphanie Pellerin ◽  
Yann Fraigneau ◽  
Guillaume Bonnavion ◽  
Olivier Cadot

We investigate the large-scale signature of the random switches between two mirrored turbulent wake states of flat-backed bodies. A direct numerical simulation (DNS) of the flow around an Ahmed body at a Reynolds number ( $Re$ ) of 10 000 is considered. Using proper orthogonal decomposition (POD), we identify the most energetic modes of the velocity field and build a low-dimensional model based on the first six fluctuating velocity modes capturing the characteristics of the flow dynamics during and between switches. In the absence of noise, the model produces random switches with characteristic time scales in agreement with the simulation and experiments. This chaotic model suggests that random switches are triggered by the increase of the vortex shedding activity. However, the addition of noise results in a better agreement in the temporal spectra of the coefficients between the model and the simulation.


Author(s):  
Hung Tran The ◽  
Masayuki Anyoji ◽  
Takuji Nakashima ◽  
Keigo Shimizu ◽  
Anh Dinh Le

Abstract In this study, skin friction around a ½-scale Ahmed body was measured experimentally at a Reynolds number of Re = 2×105. The slant angle of the Ahmed body was 25° and the yaw angles ranged from 0° to 8°. This study focused on the flow structure on the slant surface under different cross-wind conditions. A force balance system was applied to measure the aerodynamic drag of the model. The global skin-friction topology was measured by applying a luminescent oil layer with a sub-grid data processing algorithm. The method used to measure the skin friction was conducted for the first time on the Ahmed body. The results indicated that the technique is highly capable of extracting the skin-friction topology. For a yaw angle below 3°, the flow on the slant surface was not significantly affected by the cross-wind condition and the drag of the model was nearly constant. However, at yaw angles above 3°, the flow on the slant surface was highly affected by the roof longitudinal vortexes on the windward side, leading to a dramatic increase in the drag of the model. High consistency in the drag and skin-friction fields was observed. The detailed skin-friction structure at different yaw angles will be discussed in this study.


2021 ◽  
Vol 926 ◽  
Author(s):  
D. Burton ◽  
S. Wang ◽  
D. Tudball Smith ◽  
H. N. Scott ◽  
T. N. Crouch ◽  
...  

The discovery of wake bistability has generated an upsurge in experimental investigations into the wakes of simplified vehicle geometries. Particular focus has centred on the probabilistic switching between two asymmetrical bistable wake states of a square-back Ahmed body; however, the majority of this research has been undertaken in wind tunnels with turbulence intensities of less than $1\,\%$ , considerably lower than typical atmospheric levels. To better simulate bistability under on-road conditions, in which turbulence intensities can easily reach levels of $10\,\%$ or more, this experimental study investigates the effects of free-stream turbulence on the bistability characteristics of the square-back Ahmed body. Through passive generation and quantification of the free-stream turbulent conditions, a monotonic correlation was found between the switching rate and free-stream turbulence intensity.


Sign in / Sign up

Export Citation Format

Share Document