The offshore vortex train

1994 ◽  
Vol 276 ◽  
pp. 113-124 ◽  
Author(s):  
N. Matsunaga ◽  
K. Takehara ◽  
Y. Awaya

A row of two-dimensional vortices forms in an offshore zone when regular surface waves run up a sloping flat bed. This vortex row is called the offshore vortex train. The vortices begin to appear near the breaking point. Moving in the offshore direction, they develop and increase their horizontal lengthscale through vortex merging. After reaching a particular offshore location, however, they decay rapidly. The formation region of the vortex train has been investigated on the basis of visual experiments for three bed slopes. Its formation does not depend on the type of wave breaking but is observed when the steepness of deep-water waves is smaller than 4.2 × 10−2. The horizontal lengthscale of the vortices and the velocities of the vortex movement have also been evaluated empirically.

1994 ◽  
Vol 262 ◽  
pp. 265-291 ◽  
Author(s):  
Mansour Ioualalen ◽  
Christian Kharif

A numerical procedure has been developed to study the linear stability of nonlinear three-dimensional progressive gravity waves on deep water. The three-dimensional patterns considered herein are short-crested waves which may be produced by two progressive plane waves propagating at an oblique angle, γ, to each other. It is shown that for moderate wave steepness the dominant resonances are sideband-type instabilities in the direction of propagation and, depending on the value of γ, also in the transverse direction. It is also shown that three-dimensional progressive gravity waves are less unstable than two-dimensional progressive gravity waves.


Author(s):  
Alfred R. Osborne

Abstract This paper addresses two issues with regard to nonlinear ocean waves. (1) The first issue relates to the often-confused differences between the coordinates used for the measurement and characterization of ocean surface waves: The surface elevation and the complex modulation of a wave field. (2) The second issue relates to the very different kinds of physical wave behavior that occur in shallow and deep water. Both issues come from the known, very different behaviors of deep and shallow water waves. In shallow water one often uses the Korteweg-deVries that describes the wave surface elevation in terms of cnoidal waves and solitons. In deep water one uses the nonlinear Schrödinger equation whose solutions correspond to the complex envelope of a wave field that has Stokes wave and breather solutions. Here I make clear the relationships between the two ways of characterizing surface waves. Furthermore, and more importantly, I address the issues of matching the two types of wave behavior as the wave motion passes from deep to shallow water, or vice versa. For wave measurements we normally obtain the surface elevation with a wave staff, resistance gauge or pressure recorder for getting time series. Remote sensing applications relate to the use of lidar, radar or synthetic aperture radar for obtaining space series. The two types of wave behavior can therefore crucially depend on where the instrument is placed on the “ground track” or “field” over which the lidar or radar measurements are made. Thus the matching problem from deep to shallow water is not only important for wave measurements, but also for wave modeling. Modern wave models [Osborne, 2010, 2018, 2019a, 2019b] that maintain the coherent structures of wave dynamics (solitons, Stokes waves, breathers, superbreathers, vortices, etc.) must naturally pass from deep to shallow water where the nature of the nonlinear physics, and the form of the coherent structures, change. I address these issues and more herein. This paper is directed towards the development of methods for the real time measurement of waves by shipboard radar and for wave measurements by airplane and helicopter using lidar and synthetic aperture radar. Wave modeling efforts are also underway.


2015 ◽  
Vol 778 ◽  
pp. 314-334 ◽  
Author(s):  
R. M. Moreira ◽  
J. T. A. Chacaltana

The effects of uniform vorticity on a train of ‘gentle’ and ‘steep’ deep-water waves interacting with underlying flows are investigated through a fully nonlinear boundary integral method. It is shown that wave blocking and breaking can be more prominent depending on the magnitude and direction of the shear flow. Reflection continues to occur when sufficiently strong adverse currents are imposed on ‘gentle’ deep-water waves, though now affected by vorticity. For increasingly positive values of vorticity, the induced shear flow reduces the speed of right-going progressive waves, introducing significant changes to the free-surface profile until waves are completely blocked by the underlying current. A plunging breaker is formed at the blocking point when ‘steep’ deep-water waves interact with strong adverse currents. Conversely negative vorticities augment the speed of right-going progressive waves, with wave breaking being detected for strong opposing currents. The time of breaking is sensitive to the vorticity’s sign and magnitude, with wave breaking occurring later for negative values of vorticity. Stopping velocities according to nonlinear wave theory proved to be sufficient to cause wave blocking and breaking.


Author(s):  
F. Ursell

In this paper the two-dimensional reflection of surface waves from a vertical barrier in deep water is studied theoretically.It can be shown that when the normal velocity is prescribed at each point of an infinite vertical plane extending from the surface, the motion on each side of the plane is completely determined, apart from a motion consisting of simple standing waves. In the cases considered here the normal velocity is prescribed on a part of the vertical plane and is taken to be unknown elsewhere. From the condition of continuity of the motion above and below the barrier an integral equation for the normal velocity can be derived, which is of a simple type, in the case of deep water. We begin by considering in detail the reflection from a fixed vertical barrier extending from depth a to some point above the mean surface.


1988 ◽  
pp. 71-83 ◽  
Author(s):  
Y. A. Papadimitrakis ◽  
N. E. Huang ◽  
L. F. Bliven ◽  
S. R. Long

Sign in / Sign up

Export Citation Format

Share Document