Parametric instabilities of finite-amplitude, circularly polarized Alfvén waves in an anisotropic plasma

1993 ◽  
Vol 49 (1) ◽  
pp. 29-39 ◽  
Author(s):  
Hiromitsu Hamabata

A class of parametric instabilities of finite-amplitude, circularly polarized Alfvén waves in a plasma with pressure anisotropy is studied by application of the CGL equations. A linear perturbation analysis is used to find the dispersion relation governing the instabilities, which is a fifth-order polynomial and is solved numerically. A large-amplitude, circularly polarized wave is unstable with respect to decay into three waves: one sound-like wave and two side-band Alfvén-like waves. It is found that, in addition to the decay instability, two new instabilities that are absent in the framework of the MHD equations can occur, depending on the plasma parameters.

1988 ◽  
Vol 40 (2) ◽  
pp. 281-287 ◽  
Author(s):  
G. Mann

Finite-amplitude circularly polarized Alfvén waves propagating along the ambient magnetic field are described by a derivative nonlinear Schrödinger-type equation. It leads to stationary, solitary and periodic solutions with phase modulations. The amplitude–width relation for these solitons is shown to be an inequality. The relevance of the results is briefly discussed for particular phenomena in the solar wind.


Sign in / Sign up

Export Citation Format

Share Document