On nonlinear circularly polarized Alfvén waves

1988 ◽  
Vol 40 (2) ◽  
pp. 281-287 ◽  
Author(s):  
G. Mann

Finite-amplitude circularly polarized Alfvén waves propagating along the ambient magnetic field are described by a derivative nonlinear Schrödinger-type equation. It leads to stationary, solitary and periodic solutions with phase modulations. The amplitude–width relation for these solitons is shown to be an inequality. The relevance of the results is briefly discussed for particular phenomena in the solar wind.

1993 ◽  
Vol 49 (1) ◽  
pp. 29-39 ◽  
Author(s):  
Hiromitsu Hamabata

A class of parametric instabilities of finite-amplitude, circularly polarized Alfvén waves in a plasma with pressure anisotropy is studied by application of the CGL equations. A linear perturbation analysis is used to find the dispersion relation governing the instabilities, which is a fifth-order polynomial and is solved numerically. A large-amplitude, circularly polarized wave is unstable with respect to decay into three waves: one sound-like wave and two side-band Alfvén-like waves. It is found that, in addition to the decay instability, two new instabilities that are absent in the framework of the MHD equations can occur, depending on the plasma parameters.


2002 ◽  
Vol 20 (2) ◽  
pp. 161-174 ◽  
Author(s):  
P. Prikryl ◽  
G. Provan ◽  
K. A. McWilliams ◽  
T. K. Yeoman

Abstract. Pulsed ionospheric flows (PIFs) in the cusp foot-print have been observed by the SuperDARN radars with periods between a few minutes and several tens of minutes. PIFs are believed to be a consequence of the interplanetary magnetic field (IMF) reconnection with the magnetospheric magnetic field on the dayside magnetopause, ionospheric signatures of flux transfer events (FTEs). The quasiperiodic PIFs are correlated with Alfvénic fluctuations observed in the upstream solar wind. It is concluded that on these occasions, the FTEs were driven by Alfvén waves coupling to the day-side magnetosphere. Case studies are presented in which the dawn-dusk component of the Alfvén wave electric field modulates the reconnection rate as evidenced by the radar observations of the ionospheric cusp flows. The arrival of the IMF southward turning at the magnetopause is determined from multipoint solar wind magnetic field and/or plasma measurements, assuming plane phase fronts in solar wind. The cross-correlation lag between the solar wind data and ground magnetograms that were obtained near the cusp footprint exceeded the estimated spacecraft-to-magnetopause propagation time by up to several minutes. The difference can account for and/or exceeds the Alfvén propagation time between the magnetopause and ionosphere. For the case of short period ( < 13 min) PIFs, the onset times of the flow transients appear to be further delayed by at most a few more minutes after the IMF southward turning arrived at the magnetopause. For the case of long period (30 – 40 min) PIFs, the observed additional delays were 10–20 min. We interpret the excess delay in terms of an intrinsic time scale for reconnection (Russell et al., 1997) which can be explained by the surface-wave induced magnetic reconnection mechanism (Uberoi et al., 1999). Here, surface waves with wavelengths larger than the thickness of the neutral layer induce a tearing-mode instability whose rise time explains the observed delay of the reconnection onset. The compressional fluctuations in solar wind and those generated in the magnetosheath through the interaction between the solar wind Alfvén waves and the bow shock were the source of magnetopause surface waves inducing reconnection.Key words. Interplanetary physics (MHD waves and turbulence) – Magnetospheric physics (magnetosphere-ionosphere interactions; solar wind-magnetosphere interactions)


2005 ◽  
Vol 23 (2) ◽  
pp. 401-417 ◽  
Author(s):  
P. Prikryl ◽  
D. B. Muldrew ◽  
G. J. Sofko ◽  
J. M. Ruohoniemi

Abstract. A case study of medium-scale travelling ionospheric disturbances (TIDs) that are correlated with solar wind Alfvén waves is presented. The HF radar ground-scatter signatures of TIDs caused by atmospheric gravity waves with periods of 20-40min are traced to a source at high latitudes, namely pulsed ionospheric flows (PIFs) due to bursts in the convection electric field and/or the associated ionospheric current fluctuations inferred from ground magnetic field perturbations. The significance of PIFs and TIDs in the context of solar-terrestrial interaction is that Alfvénic fluctuations of the interplanetary magnetic field (IMF) observed in the solar wind plasma streaming from a coronal hole correlate with PIFs and TIDs. The link between the solar wind Alfvén waves and TIDs is corroborated by the ground magnetic field signatures of ionospheric current fluctuations that are associated with the IMF-By oscillations and TIDs. The observed PIFs and the associated negative-to-positive deflections of the ground magnetic field X component are interpreted as ionospheric signatures of magnetic reconnection pulsed by solar wind Alfvén waves at the dayside magnetopause. Although the clarity of the radar line-of-sight velocity data may have been affected by anomalous HF propagation due to intervening TIDs, the application of a pure state filtering technique to analyze the radar data time series reveals a one-to-one correspondence between PIFs, TIDs and solar wind Alfvén waves. The spectra of solar wind and ground magnetic field perturbations are similar to those of PIFs and TIDs. The ground-scatter signatures indicate TID wavelengths, phase velocities and travel times that are consistent with ray tracing, which shows a subset of possible gravity wave group paths that reach the F region from a source in the E region after the wave energy first travel downward to the upper mesosphere where the waves are reflected upward. The observed one-to-one correspondence between the convection electric field bursts and TIDs is consistent with the modeling results for large-scale TIDs by Millward et al. (1993a,b). The correlation with solar wind Alfvén waves points to very direct coupling of energy in the solar wind into the subauroral atmosphere.


Sign in / Sign up

Export Citation Format

Share Document