Uniqueness, definability and interpolation

1988 ◽  
Vol 53 (2) ◽  
pp. 554-570 ◽  
Author(s):  
Kosta Došen ◽  
Peter Schroeder-Heister

This paper is meant to be a comment on Beth's definability theorem. In it we shall make the following points.Implicit definability as mentioned in Beth's theorem for first-order logic is a special case of a more general notion of uniqueness. If α is a nonlogical constant, Tα a set of sentences, α* an additional constant of the same syntactical category as α and Tα, a copy of Tα with α* instead of α, then for implicit definability of α in Tα one has, in the case of predicate constants, to derive α(x1,…,xn) ↔ α*(x1,…,xn) from Tα ∪ Tα*, and similarly for constants of other syntactical categories. For uniqueness one considers sets of schemata Sα and derivability from instances of Sα ∪ Sα* in the language with both α and α*, thus allowing mixing of α and α* not only in logical axioms and rules, but also in nonlogical assumptions. In the first case, but not necessarily in the second one, explicit definability follows. It is crucial for Beth's theorem that mixing of α and α* is allowed only inside logic, not outside. This topic will be treated in §1.Let the structural part of logic be understood roughly in the sense of Gentzen-style proof theory, i.e. as comprising only those rules which do not specifically involve logical constants. If we restrict mixing of α and α* to the structural part of logic which we shall specify precisely, we obtain a different notion of implicit definability for which we can demonstrate a general definability theorem, where a is not confined to the syntactical categories of nonlogical expressions of first-order logic. This definability theorem is a consequence of an equally general interpolation theorem. This topic will be treated in §§2, 3, and 4.

2000 ◽  
Vol 6 (4) ◽  
pp. 447-462 ◽  
Author(s):  
Martin Otto

AbstractLyndon's Interpolation Theorem asserts that for any valid implication between two purely relational sentences of first-order logic, there is an interpolant in which each relation symbol appears positively (negatively) only if it appears positively (negatively) in both the antecedent and the succedent of the given implication. We prove a similar, more general interpolation result with the additional requirement that, for some fixed tuple of unary predicates U, all formulae under consideration have all quantifiers explicitly relativised to one of the U. Under this stipulation, existential (universal) quantification over U contributes a positive (negative) occurrence of U.It is shown how this single new interpolation theorem, obtained by a canonical and rather elementary model theoretic proof, unifies a number of related results: the classical characterisation theorems concerning extensions (substructures) with those concerning monotonicity, as well as a many-sorted interpolation theorem focusing on positive vs. negative occurrences of predicates and on existentially vs. universally quantified sorts.


2015 ◽  
Vol 21 (2) ◽  
pp. 123-163 ◽  
Author(s):  
ROY DYCKHOFF ◽  
SARA NEGRI

AbstractThat every first-order theory has a coherent conservative extension is regarded by some as obvious, even trivial, and by others as not at all obvious, but instead remarkable and valuable; the result is in any case neither sufficiently well-known nor easily found in the literature. Various approaches to the result are presented and discussed in detail, including one inspired by a problem in the proof theory of intermediate logics that led us to the proof of the present paper. It can be seen as a modification of Skolem’s argument from 1920 for his “Normal Form” theorem. “Geometric” being the infinitary version of “coherent”, it is further shown that every infinitary first-order theory, suitably restricted, has a geometric conservative extension, hence the title. The results are applied to simplify methods used in reasoning in and about modal and intermediate logics. We include also a new algorithm to generate special coherent implications from an axiom, designed to preserve the structure of formulae with relatively little use of normal forms.


Author(s):  
Shawn Hedman

The ability to reason and think in a logical manner forms the basis of learning for most mathematics, computer science, philosophy and logic students. Based on the author's teaching notes at the University of Maryland and aimed at a broad audience, this text covers the fundamental topics in classical logic in an extremely clear, thorough and accurate style that is accessible to all the above. Covering propositional logic, first-order logic, and second-order logic, as well as proof theory, computability theory, and model theory, the text also contains numerous carefully graded exercises and is ideal for a first or refresher course.


1985 ◽  
Vol 50 (3) ◽  
pp. 708-713 ◽  
Author(s):  
Douglas N. Hoover

The probability logic is a logic with a natural interpretation on probability spaces (thus, a logic whose model theory is part of probability theory rather than a system for putting probabilities on formulas of first order logic). Its exact definition and basic development are contained in the paper [3] of H. J. Keisler and the papers [1] and [2] of the author. Building on work in [2], we prove in this paper the following probabilistic interpolation theorem for .Let L be a countable relational language, and let A be a countable admissible set with ω ∈ A (in this paper some probabilistic notation will be used, but ω will always mean the least infinite ordinal). is the admissible fragment of corresponding to A. We will assume that L is a countable set in A, as is usual in practice, though all that is in fact needed for our proof is that L be a set in A which is wellordered in A.Theorem. Let ϕ(x) and ψ(x) be formulas of LAP such thatwhere ε ∈ [0, 1) is a real in A (reals may be defined in the usual way as Dedekind cuts in the rationals). Then for any real d > ε¼, there is a formula θ(x) of (L(ϕ) ∩ L(ψ))AP such thatand


Studia Logica ◽  
2010 ◽  
Vol 96 (3) ◽  
pp. 349-373
Author(s):  
Yehuda Schwartz ◽  
George Tourlakis

2019 ◽  
Author(s):  
Marcello Sachs

A theorem is proven regarding our ability to construct resolution proofs with certain structural properties. This theorem is then used to provide a new constructive proof of the Craig Interpolation Theorem for Classical First Order Logic.


Author(s):  
Richard Kimberly Heck

It has been known for a few years that no more than Π‎1 1 ∆1 3 comprehension is needed for the proof of “Frege’s Theorem.” One can at least imagine a view that would regard Pi-1-1 comprehension axioms as logical truths but deny that status to any that are more complex—a view that would, in particular, deny that full second-order logic deserves the name. Such a view would serve the purposes of neo-logicists. It is, in fact, no part of my view that, say, Delta-3-1 comprehension axioms are not logical truths. What I suggest, however, is that there is a special case to be made on behalf of Pi-1-1 comprehension. Making the case involves investigating extensions of first-order logic that do not rely upon the presence of second-order quantifiers. A formal system for so-called “ancestral logic” is developed, and it is then extended to yield what I call “Arché logic.”


Sign in / Sign up

Export Citation Format

Share Document