Uniformly defined descending sequences of degrees

1976 ◽  
Vol 41 (2) ◽  
pp. 363-367 ◽  
Author(s):  
Harvey Friedman

This paper answers some questions which naturally arise from the Spector-Gandy proof of their theorem that the π11 sets of natural numbers are precisely those which are defined by a Σ11 formula over the hyperarithmetic sets. Their proof used hierarchies on recursive linear orderings (H-sets) which are not well orderings. (In this respect they anticipated the study of nonstandard models of set theory.) The proof hinged on the following fact. Let e be a recursive linear ordering. Then e is a well ordering if and only if there is an H-set on e which is hyperarithmetic. It was implicit in their proof that there are recursive linear orderings which are not well orderings, on which there are H-sets. Further information on such nonstandard H-sets (often called pseudohierarchies) can be found in Harrison [4]. It is natural to ask: on which recursive linear orderings are there H-sets?In Friedman [1] it is shown that there exists a recursive linear ordering e that has no hyperarithmetic descending sequences such that no H-set can be placed on e. In [1] it is also shown that if e is a recursive linear ordering, every point of which has an immediate successor and either has finitely many predecessors or is finitely above a limit point (heretofore called adequate) such that an H-set can be placed on e, then e has no hyperarithmetic descending sequences. In a related paper, Friedman [2] shows that there is no infinite sequence xn of codes for ω-models of the arithmetic comprehension axiom scheme such that each xn+ 1 is a set in the ω-model coded by xn, and each xn+1 is the unique solution of P(xn, xn+1) for some fixed arithmetic P.

1983 ◽  
Vol 48 (1) ◽  
pp. 33-38 ◽  
Author(s):  
Menachem Magidor ◽  
Saharon Shelah ◽  
Jonathan Stavi

AbstractWe characterize the ordinals α of uncountable cofinality such that α is the standard part of a nonstandard model of ZFC (or equivalently KP).


1980 ◽  
Vol 45 (1) ◽  
pp. 9-19
Author(s):  
David Guaspari

Call a set A of ordinals “definable” over a theory T if T is some brand of set theory and whenever A appears in the standard part of a (not necessarily standard) model of T, A is “definable”. Two kinds of “definability” are considered, for each of which is provided a complete (or almost complete) characterization of the hereditarily countable sets of ordinals “definable” over true finitely axiomatizable set theories: (1) there is a single formula ϕ such that in any model of T containing A, A is the unique solution to ϕ; (2) the defining formula is allowed to vary from model to model. (Note. The restrictions “finitely axiomatizable”, and “true” are largely for the sake of convenience: such theories provably have lots of models.)There are few allusions to what a model theorist would regard as his subject—the methods coming from recursion theory and set theory; but the treatment is intended to be intelligible to nonspecialists. The referee's criticisms have greatly improved the exposition.I would like to thank Leo Harrington for several discussions, both helpful and hapless, and especially for a clever and timely proof which rescued this project from a moribund state. (Further thanks are due to the Movshon family, as a result of whose New Year's Eve party it became clear that the only really magic formulas are Σ1 formulas.)


1965 ◽  
Vol 30 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Gaisi Takeuti

In this paper, by a function of ordinals we understand a function which is defined for all ordinals and each of whose value is an ordinal. In [7] (also cf. [8] or [9]) we defined recursive functions and predicates of ordinals, following Kleene's definition on natural numbers. A predicate will be called arithmetical, if it is obtained from a recursive predicate by prefixing a sequence of alternating quantifiers. A function will be called arithmetical, if its representing predicate is arithmetical.The cardinals are identified with those ordinals a which have larger power than all smaller ordinals than a. For any given ordinal a, we denote by the cardinal of a and by 2a the cardinal which is of the same power as the power set of a. Let χ be the function such that χ(a) is the least cardinal which is greater than a.Now there are functions of ordinals such that they are easily defined in set theory, but it seems impossible to define them as arithmetical ones; χ is such a function. If we define χ in making use of only the language on ordinals, it seems necessary to use the notion of all the functions from ordinals, e.g., as in [6].


Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 910 ◽  
Author(s):  
Vladimir Kanovei ◽  
Vassily Lyubetsky

Models of set theory are defined, in which nonconstructible reals first appear on a given level of the projective hierarchy. Our main results are as follows. Suppose that n ≥ 2 . Then: 1. If it holds in the constructible universe L that a ⊆ ω and a ∉ Σ n 1 ∪ Π n 1 , then there is a generic extension of L in which a ∈ Δ n + 1 1 but still a ∉ Σ n 1 ∪ Π n 1 , and moreover, any set x ⊆ ω , x ∈ Σ n 1 , is constructible and Σ n 1 in L . 2. There exists a generic extension L in which it is true that there is a nonconstructible Δ n + 1 1 set a ⊆ ω , but all Σ n 1 sets x ⊆ ω are constructible and even Σ n 1 in L , and in addition, V = L [ a ] in the extension. 3. There exists an generic extension of L in which there is a nonconstructible Σ n + 1 1 set a ⊆ ω , but all Δ n + 1 1 sets x ⊆ ω are constructible and Δ n + 1 1 in L . Thus, nonconstructible reals (here subsets of ω ) can first appear at a given lightface projective class strictly higher than Σ 2 1 , in an appropriate generic extension of L . The lower limit Σ 2 1 is motivated by the Shoenfield absoluteness theorem, which implies that all Σ 2 1 sets a ⊆ ω are constructible. Our methods are based on almost-disjoint forcing. We add a sufficient number of generic reals to L , which are very similar at a given projective level n but discernible at the next level n + 1 .


2000 ◽  
Vol 39 (7) ◽  
pp. 509-514 ◽  
Author(s):  
James H. Schmerl

1984 ◽  
Vol 24 (5) ◽  
pp. 735-746 ◽  
Author(s):  
A. G. Kusraev ◽  
S. S. Kutateladze

Sign in / Sign up

Export Citation Format

Share Document