nonstandard model
Recently Published Documents


TOTAL DOCUMENTS

62
(FIVE YEARS 1)

H-INDEX

11
(FIVE YEARS 0)

2021 ◽  
Vol 923 (2) ◽  
pp. 244
Author(s):  
Yoshiki Hatta ◽  
Takashi Sekii ◽  
Masao Takata ◽  
Othman Benomar

Abstract Nonstandard modeling of KIC 11145123, a possible blue straggler star, has been asteroseismically carried out based on a scheme to compute stellar models with the chemical compositions in their envelopes arbitrarily modified, mimicking the effects of some interactions with other stars through which blue straggler stars are thought to be born. We have constructed a nonstandard model of the star with the following parameters: M = 1.36 M ⊙, Y init = 0.26, Z init = 0.002, and f ovs = 0.027, where f ovs is the extent of overshooting described as an exponentially decaying diffusive process. The modification is down to the depth of r/R ∼ 0.6 and the extent ΔX, which is a difference in surface hydrogen abundance between the envelope-modified and unmodified models, is 0.06. The residuals between the model and the observed frequencies are comparable with those for the previous model computed assuming standard single-star evolution, suggesting that it is possible that the star was born with a relatively ordinary initial helium abundance of ∼0.26 compared with that of the previous models (∼0.30–0.40), then experienced some modification of the chemical compositions and gained helium in the envelope. Detailed analyses of the nonstandard model have implied that the elemental diffusion in the deep radiative region of the star might be much weaker than that assumed in current stellar evolutionary calculations; we need some extra mechanisms inside the star, rendering the star a much more intriguing target to be further investigated.


2018 ◽  
Vol 2020 (1) ◽  
pp. 112-166 ◽  
Author(s):  
Matthias Aschenbrenner ◽  
Anatole Khélif ◽  
Eudes Naziazeno ◽  
Thomas Scanlon

AbstractWe characterize those finitely generated commutative rings which are (parametrically) bi-interpretable with arithmetic: a finitely generated commutative ring A is bi-interpretable with $(\mathbb{N},{+},{\times })$ if and only if the space of non-maximal prime ideals of A is nonempty and connected in the Zariski topology and the nilradical of A has a nontrivial annihilator in $\mathbb{Z}$. Notably, by constructing a nontrivial derivation on a nonstandard model of arithmetic we show that the ring of dual numbers over $\mathbb{Z}$ is not bi-interpretable with $\mathbb{N}$.


2017 ◽  
Vol 82 (1) ◽  
pp. 292-302 ◽  
Author(s):  
MAKOTO KIKUCHI ◽  
TAISHI KURAHASHI

AbstractGödel introduced the original provability predicate in the proofs of Gödel’s incompleteness theorems, and Rosser defined a new one. They are equivalent in the standard model ${\mathbb N}$ of arithmetic or any nonstandard model of ${\rm PA} + {\rm Con_{PA}} $, but the behavior of Rosser’s provability predicate is different from the original one in nonstandard models of ${\rm PA} + \neg {\rm Con_{PA}} $. In this paper, we investigate several properties of the derivability conditions for Rosser provability predicates, and prove the existence of a Rosser provability predicate with which we can define any consistent complete extension of ${\rm PA}$ in some nonstandard model of ${\rm PA} + \neg {\rm Con_{PA}} $. We call it a universal Rosser predicate. It follows from the theorem that the true arithmetic ${\rm TA}$ can be defined as the set of theorems of ${\rm PA}$ in terms of a universal Rosser predicate in some nonstandard model of ${\rm PA} + \neg {\rm Con_{PA}} $. By using this theorem, we also give a new proof of a theorem that there is a nonstandard model M of ${\rm PA} + \neg {\rm Con_{PA}} $ such that if N is an initial segment of M which is a model of ${\rm PA} + {\rm Con_{PA}} $ then every theorem of ${\rm PA}$ in N is a theorem of $\rm PA$ in ${\mathbb N}$. In addition, we prove that there is a Rosser provability predicate such that the set of theorems of $\rm PA$ in terms of the Rosser provability predicate is inconsistent in any nonstandard model of ${\rm PA} + \neg {\rm Con_{PA}} $.


2016 ◽  
Vol 25 (12) ◽  
pp. 1644008 ◽  
Author(s):  
Eduardo Guendelman ◽  
Emil Nissimov ◽  
Svetlana Pacheva

We consider a nonstandard model of gravity coupled to a neutral scalar “inflaton” as well as to [Formula: see text] iso-doublet scalar with positive mass squared and without self-interaction, and to [Formula: see text] gauge fields. The principal new ingredient is employing two alternative non-Riemannian spacetime volume-forms (covariant integration measure densities) independent of the metric. The latter have a remarkable impact — although not introducing any additional propagating degrees of freedom, their dynamics triggers a series of important features: appearance of infinitely large flat regions of the effective “inflaton” potential as well as dynamical generation of Higgs-like spontaneous symmetry breaking effective potential for the [Formula: see text] iso-doublet scalar.


2016 ◽  
Vol 81 (3) ◽  
pp. 1163-1175 ◽  
Author(s):  
MAKOTO KIKUCHI ◽  
TAISHI KURAHASHI

AbstractBy using a provability predicate of PA, we define ThmPA(M) as the set of theorems of PA in a model M of PA. We say a model M of PA is (1) illusory if ThmPA(M) ⊈ ThmPA(ℕ), (2) heterodox if ThmPA(M) ⊈ TA, (3) sane if M ⊨ ConPA, and insane if it is not sane, (4) maximally sane if it is sane and ThmPA(M) ⊆ ThmPA(N) implies ThmPA(M) = ThmPA(N) for every sane model N of PA. We firstly show that M is heterodox if and only if it is illusory, and that ThmPA(M) ∩ TA ≠ ThmPA(ℕ) for any illusory model M. Then we show that there exists a maximally sane model, every maximally sane model satisfies ¬ConPA+ConPA, and there exists a sane model of ¬ConPA+ConPA which is not maximally sane. We define that an insane model is (5) illusory by nature if its every initial segment being a nonstandard model of PA is illusory, and (6) going insane suddenly if its every initial segment being a sane model of PA is not illusory. We show that there exists a model of PA which is illusory by nature, and we prove the existence of a model of PA which is going insane suddenly.


2014 ◽  
Vol 79 (3) ◽  
pp. 845-858
Author(s):  
RICHARD KAYE

AbstractThis paper addresses the structures (M, ω) and (ω, SSy(M)), whereMis a nonstandard model of PA andωis the standard cut. It is known that (ω, SSy(M)) is interpretable in (M, ω). Our main technical result is that there is an reverse interpretation of (M, ω) in (ω, SSy(M)) which is ‘local’ in the sense of Visser [11]. We also relate the model theory of (M, ω) to the study of transplendent models of PA [2].This yields a number of model theoretic results concerning theω-models (M, ω) and their standard systems SSy(M, ω), including the following.•$\left( {M,\omega } \right) \prec \left( {K,\omega } \right)$if and only if$M \prec K$and$\left( {\omega ,{\rm{SSy}}\left( M \right)} \right) \prec \left( {\omega ,{\rm{SSy}}\left( K \right)} \right)$.•$\left( {\omega ,{\rm{SSy}}\left( M \right)} \right) \prec \left( {\omega ,{\cal P}\left( \omega \right)} \right)$if and only if$\left( {M,\omega } \right) \prec \left( {{M^{\rm{*}}},\omega } \right)$for someω-saturatedM*.•$M{ \prec _{\rm{e}}}K$implies SSy(M, ω) = SSy(K, ω), but cofinal extensions do not necessarily preserve standard system in this sense.• SSy(M, ω)=SSy(M) if and only if (ω, SSy(M)) satisfies the full comprehension scheme.• If SSy(M, ω) is uniformly defined by a single formula (analogous to aβfunction), then (ω, SSy(M, ω)) satisfies the full comprehension scheme; and there are modelsMfor which SSy(M, ω) is not uniformly defined in this sense.


2013 ◽  
Vol 13 (02) ◽  
pp. 1350006 ◽  
Author(s):  
JOEL DAVID HAMKINS

The main theorem of this article is that every countable model of set theory 〈M, ∈M〉, including every well-founded model, is isomorphic to a submodel of its own constructible universe 〈LM, ∈M〉 by means of an embedding j : M → LM. It follows from the proof that the countable models of set theory are linearly pre-ordered by embeddability: if 〈M, ∈M〉 and 〈N, ∈N〉 are countable models of set theory, then either M is isomorphic to a submodel of N or conversely. Indeed, these models are pre-well-ordered by embeddability in order-type exactly ω1 + 1. Specifically, the countable well-founded models are ordered under embeddability exactly in accordance with the heights of their ordinals; every shorter model embeds into every taller model; every model of set theory M is universal for all countable well-founded binary relations of rank at most Ord M; and every ill-founded model of set theory is universal for all countable acyclic binary relations. Finally, strengthening a classical theorem of Ressayre, the proof method shows that if M is any nonstandard model of PA, then every countable model of set theory — in particular, every model of ZFC plus large cardinals — is isomorphic to a submodel of the hereditarily finite sets 〈 HF M, ∈M〉 of M. Indeed, 〈 HF M, ∈M〉 is universal for all countable acyclic binary relations.


Sign in / Sign up

Export Citation Format

Share Document