On the standard part of nonstandard models of set theory

1983 ◽  
Vol 48 (1) ◽  
pp. 33-38 ◽  
Author(s):  
Menachem Magidor ◽  
Saharon Shelah ◽  
Jonathan Stavi

AbstractWe characterize the ordinals α of uncountable cofinality such that α is the standard part of a nonstandard model of ZFC (or equivalently KP).

1982 ◽  
Vol 47 (2) ◽  
pp. 416-422 ◽  
Author(s):  
L. A. S. Kirby

Flipping properties were introduced in set theory by Abramson, Harrington, Kleinberg and Zwicker [1]. Here we consider them in the context of arithmetic and link them with combinatorial properties of initial segments of nonstandard models studied in [3]. As a corollary we obtain independence resutls involving flipping properties.We follow the notation of the author and Paris in [3] and [2], and assume some knowledge of [3]. M will denote a countable nonstandard model of P (Peano arithmetic) and I will be a proper initial segment of M. We denote by N the standard model or the standard part of M. X ↑ I will mean that X is unbounded in I. If X ⊆ M is coded in M and M ≺ K, let X(K) be the subset of K coded in K by the element which codes X in M. So X(K) ⋂ M = X.Recall that M ≺IK (K is an I-extension of M) if M ≺ K and for some c∈K,In [3] regular and strong initial segments are defined, and among other things it is shown that I is regular if and only if there exists an I-extension of M.


1976 ◽  
Vol 41 (2) ◽  
pp. 363-367 ◽  
Author(s):  
Harvey Friedman

This paper answers some questions which naturally arise from the Spector-Gandy proof of their theorem that the π11 sets of natural numbers are precisely those which are defined by a Σ11 formula over the hyperarithmetic sets. Their proof used hierarchies on recursive linear orderings (H-sets) which are not well orderings. (In this respect they anticipated the study of nonstandard models of set theory.) The proof hinged on the following fact. Let e be a recursive linear ordering. Then e is a well ordering if and only if there is an H-set on e which is hyperarithmetic. It was implicit in their proof that there are recursive linear orderings which are not well orderings, on which there are H-sets. Further information on such nonstandard H-sets (often called pseudohierarchies) can be found in Harrison [4]. It is natural to ask: on which recursive linear orderings are there H-sets?In Friedman [1] it is shown that there exists a recursive linear ordering e that has no hyperarithmetic descending sequences such that no H-set can be placed on e. In [1] it is also shown that if e is a recursive linear ordering, every point of which has an immediate successor and either has finitely many predecessors or is finitely above a limit point (heretofore called adequate) such that an H-set can be placed on e, then e has no hyperarithmetic descending sequences. In a related paper, Friedman [2] shows that there is no infinite sequence xn of codes for ω-models of the arithmetic comprehension axiom scheme such that each xn+ 1 is a set in the ω-model coded by xn, and each xn+1 is the unique solution of P(xn, xn+1) for some fixed arithmetic P.


1980 ◽  
Vol 45 (1) ◽  
pp. 9-19
Author(s):  
David Guaspari

Call a set A of ordinals “definable” over a theory T if T is some brand of set theory and whenever A appears in the standard part of a (not necessarily standard) model of T, A is “definable”. Two kinds of “definability” are considered, for each of which is provided a complete (or almost complete) characterization of the hereditarily countable sets of ordinals “definable” over true finitely axiomatizable set theories: (1) there is a single formula ϕ such that in any model of T containing A, A is the unique solution to ϕ; (2) the defining formula is allowed to vary from model to model. (Note. The restrictions “finitely axiomatizable”, and “true” are largely for the sake of convenience: such theories provably have lots of models.)There are few allusions to what a model theorist would regard as his subject—the methods coming from recursion theory and set theory; but the treatment is intended to be intelligible to nonspecialists. The referee's criticisms have greatly improved the exposition.I would like to thank Leo Harrington for several discussions, both helpful and hapless, and especially for a clever and timely proof which rescued this project from a moribund state. (Further thanks are due to the Movshon family, as a result of whose New Year's Eve party it became clear that the only really magic formulas are Σ1 formulas.)


2013 ◽  
Vol 13 (02) ◽  
pp. 1350006 ◽  
Author(s):  
JOEL DAVID HAMKINS

The main theorem of this article is that every countable model of set theory 〈M, ∈M〉, including every well-founded model, is isomorphic to a submodel of its own constructible universe 〈LM, ∈M〉 by means of an embedding j : M → LM. It follows from the proof that the countable models of set theory are linearly pre-ordered by embeddability: if 〈M, ∈M〉 and 〈N, ∈N〉 are countable models of set theory, then either M is isomorphic to a submodel of N or conversely. Indeed, these models are pre-well-ordered by embeddability in order-type exactly ω1 + 1. Specifically, the countable well-founded models are ordered under embeddability exactly in accordance with the heights of their ordinals; every shorter model embeds into every taller model; every model of set theory M is universal for all countable well-founded binary relations of rank at most Ord M; and every ill-founded model of set theory is universal for all countable acyclic binary relations. Finally, strengthening a classical theorem of Ressayre, the proof method shows that if M is any nonstandard model of PA, then every countable model of set theory — in particular, every model of ZFC plus large cardinals — is isomorphic to a submodel of the hereditarily finite sets 〈 HF M, ∈M〉 of M. Indeed, 〈 HF M, ∈M〉 is universal for all countable acyclic binary relations.


Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 910 ◽  
Author(s):  
Vladimir Kanovei ◽  
Vassily Lyubetsky

Models of set theory are defined, in which nonconstructible reals first appear on a given level of the projective hierarchy. Our main results are as follows. Suppose that n ≥ 2 . Then: 1. If it holds in the constructible universe L that a ⊆ ω and a ∉ Σ n 1 ∪ Π n 1 , then there is a generic extension of L in which a ∈ Δ n + 1 1 but still a ∉ Σ n 1 ∪ Π n 1 , and moreover, any set x ⊆ ω , x ∈ Σ n 1 , is constructible and Σ n 1 in L . 2. There exists a generic extension L in which it is true that there is a nonconstructible Δ n + 1 1 set a ⊆ ω , but all Σ n 1 sets x ⊆ ω are constructible and even Σ n 1 in L , and in addition, V = L [ a ] in the extension. 3. There exists an generic extension of L in which there is a nonconstructible Σ n + 1 1 set a ⊆ ω , but all Δ n + 1 1 sets x ⊆ ω are constructible and Δ n + 1 1 in L . Thus, nonconstructible reals (here subsets of ω ) can first appear at a given lightface projective class strictly higher than Σ 2 1 , in an appropriate generic extension of L . The lower limit Σ 2 1 is motivated by the Shoenfield absoluteness theorem, which implies that all Σ 2 1 sets a ⊆ ω are constructible. Our methods are based on almost-disjoint forcing. We add a sufficient number of generic reals to L , which are very similar at a given projective level n but discernible at the next level n + 1 .


2000 ◽  
Vol 39 (7) ◽  
pp. 509-514 ◽  
Author(s):  
James H. Schmerl

1984 ◽  
Vol 24 (5) ◽  
pp. 735-746 ◽  
Author(s):  
A. G. Kusraev ◽  
S. S. Kutateladze

Sign in / Sign up

Export Citation Format

Share Document