models of set theory
Recently Published Documents


TOTAL DOCUMENTS

113
(FIVE YEARS 12)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
pp. 1-30
Author(s):  
Ali Enayat ◽  
Zachiri McKenzie

Author(s):  
Ali Enayat

AbstractA model $${\mathcal {M}}$$ M of ZF is said to be condensable if $$ {\mathcal {M}}\cong {\mathcal {M}}(\alpha )\prec _{\mathbb {L}_{{\mathcal {M}}}} {\mathcal {M}}$$ M ≅ M ( α ) ≺ L M M for some “ordinal” $$\alpha \in \mathrm {Ord}^{{\mathcal {M}}}$$ α ∈ Ord M , where $$\mathcal {M}(\alpha ):=(\mathrm {V}(\alpha ),\in )^{{\mathcal {M}}}$$ M ( α ) : = ( V ( α ) , ∈ ) M and $$\mathbb {L}_{{\mathcal {M}}}$$ L M is the set of formulae of the infinitary logic $$\mathbb {L}_{\infty ,\omega }$$ L ∞ , ω that appear in the well-founded part of $${\mathcal {M}}$$ M . The work of Barwise and Schlipf in the 1970s revealed the fact that every countable recursively saturated model of ZF is cofinally condensable (i.e., $${\mathcal {M}}\cong {\mathcal {M}}(\alpha ) \prec _{\mathbb {L}_{{\mathcal {M}}}}{\mathcal {M}}$$ M ≅ M ( α ) ≺ L M M for an unbounded collection of $$\alpha \in \mathrm {Ord}^{{\mathcal {M}}}$$ α ∈ Ord M ). Moreover, it can be readily shown that any $$\omega $$ ω -nonstandard condensable model of $$\mathrm {ZF}$$ ZF is recursively saturated. These considerations provide the context for the following result that answers a question posed to the author by Paul Kindvall Gorbow.Theorem A.Assuming a modest set-theoretic hypothesis, there is a countable model $${\mathcal {M}}$$ M of ZFC that is bothdefinably well-founded (i.e., every first order definable element of $${\mathcal {M}}$$ M is in the well-founded part of $$\mathcal {M)}$$ M ) andcofinally condensable. We also provide various equivalents of the notion of condensability, including the result below.Theorem B.The following are equivalent for a countable model$${\mathcal {M}}$$ M of $$\mathrm {ZF}$$ ZF : (a) $${\mathcal {M}}$$ M is condensable. (b) $${\mathcal {M}}$$ M is cofinally condensable. (c) $${\mathcal {M}}$$ M is nonstandard and $$\mathcal {M}(\alpha )\prec _{\mathbb {L}_{{\mathcal {M}}}}{\mathcal {M}}$$ M ( α ) ≺ L M M for an unbounded collection of $$ \alpha \in \mathrm {Ord}^{{\mathcal {M}}}$$ α ∈ Ord M .


Mathematics ◽  
2021 ◽  
Vol 9 (14) ◽  
pp. 1670
Author(s):  
Ali Enayat ◽  
Vladimir Kanovei ◽  
Vassily Lyubetsky

Examples of effectively indiscernible projective sets of real numbers in various models of set theory are presented. We prove that it is true, in Miller and Laver generic extensions of the constructible universe, that there exists a lightface Π21 equivalence relation on the set of all nonconstructible reals, having exactly two equivalence classes, neither one of which is ordinal definable, and therefore the classes are OD-indiscernible. A similar but somewhat weaker result is obtained for Silver extensions. The other main result is that for any n, starting with 2, the existence of a pair of countable disjoint OD-indiscernible sets, whose associated equivalence relation belongs to lightface Πn1, does not imply the existence of such a pair with the associated relation in Σn1 or in a lower class.


2021 ◽  
Vol 82 (3) ◽  
Author(s):  
Benedikt Löwe ◽  
Robert Paßmann ◽  
Sourav Tarafder

AbstractAn algebra-valued model of set theory is called loyal to its algebra if the model and its algebra have the same propositional logic; it is called faithful if all elements of the algebra are truth values of a sentence of the language of set theory in the model. We observe that non-trivial automorphisms of the algebra result in models that are not faithful and apply this to construct three classes of illoyal models: tail stretches, transposition twists, and maximal twists.


2021 ◽  
Vol 85 ◽  
Author(s):  
Vladimir Grigor'evich Kanovei ◽  
Vasilii Aleksandrovich Lyubetskii

2020 ◽  
Vol 66 (2) ◽  
pp. 182-189
Author(s):  
John Clemens ◽  
Samuel Coskey ◽  
Samuel Dworetzky

Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 910 ◽  
Author(s):  
Vladimir Kanovei ◽  
Vassily Lyubetsky

Models of set theory are defined, in which nonconstructible reals first appear on a given level of the projective hierarchy. Our main results are as follows. Suppose that n ≥ 2 . Then: 1. If it holds in the constructible universe L that a ⊆ ω and a ∉ Σ n 1 ∪ Π n 1 , then there is a generic extension of L in which a ∈ Δ n + 1 1 but still a ∉ Σ n 1 ∪ Π n 1 , and moreover, any set x ⊆ ω , x ∈ Σ n 1 , is constructible and Σ n 1 in L . 2. There exists a generic extension L in which it is true that there is a nonconstructible Δ n + 1 1 set a ⊆ ω , but all Σ n 1 sets x ⊆ ω are constructible and even Σ n 1 in L , and in addition, V = L [ a ] in the extension. 3. There exists an generic extension of L in which there is a nonconstructible Σ n + 1 1 set a ⊆ ω , but all Δ n + 1 1 sets x ⊆ ω are constructible and Δ n + 1 1 in L . Thus, nonconstructible reals (here subsets of ω ) can first appear at a given lightface projective class strictly higher than Σ 2 1 , in an appropriate generic extension of L . The lower limit Σ 2 1 is motivated by the Shoenfield absoluteness theorem, which implies that all Σ 2 1 sets a ⊆ ω are constructible. Our methods are based on almost-disjoint forcing. We add a sufficient number of generic reals to L , which are very similar at a given projective level n but discernible at the next level n + 1 .


Author(s):  
Lorenz Halbeisen ◽  
Regula Krapf

Author(s):  
A.G. Kusraev ◽  
S.S. Kutateladze

Boolean valued analysis, the term coined by Takeuti, signifies a branch of functional analysis which uses a special technique of Boolean valued models of set theory. The fundamental result of Boolean valued analysis is Gordons Theorem stating that each internal field of reals of a Boolean valued model descends into a universally complete vector lattice. Thus, a remarkable opportunity opens up to expand and enrich the mathematical knowledge by translating information about the reals to the language of other branches of functional analysis. This is a brief overview of the mathematical events around the Gordon Theorem. The relationship between the Kantorovichs heuristic principle and Boolean valued transfer principle is also discussed.


Sign in / Sign up

Export Citation Format

Share Document