Reflection and the priority method in E-recursion theory

Author(s):  
Theodore A. Slaman
1983 ◽  
Vol 48 (3) ◽  
pp. 662-669 ◽  
Author(s):  
Robert E. Byerly

It is known [4, Theorem 11-X(b)] that there is only one acceptable universal function up to recursive isomorphism. It follows from this that sets definable in terms of a universal function alone are specified uniquely up to recursive isomorphism. (An example is the set K, which consists of all n such that {n}(n) is defined, where λn, m{n}(m) is an acceptable universal function.) Many of the interesting sets constructed and studied by recursion theorists, however, have definitions which involve additional notions, such as a specific enumeration of the graph of a universal function. In particular, many of these definitions make use of the interplay between the purely number-theoretic properties of indices of partial recursive functions and their purely recursion-theoretic properties.This paper concerns r.e. sets that can be defined using only a universal function and some purely number-theoretic concepts. In particular, we would like to know when certain recursion-theoretic properties of r.e. sets definable in this way are independent of the particular choice of universal function (equivalently, independent of the particular way in which godel numbers are identified with natural numbers).We will first develop a suitable model-theoretic framework for discussing this question. This will enable us to classify the formulas defining r.e. sets by their logical complexity. (We use the number of alternations of quantifiers in the prenex form of a formula as a measure of logical complexity.) We will then be able to examine the question at each level.This work is an approach to the question of when the recursion-theoretic properties of an r.e. set are independent of the particular parameters used in its construction. As such, it does not apply directly to the construction techniques most commonly used at this time for defining particular r.e. sets, e.g., the priority method. A more direct attack on this question for these techniques is represented by such works as [3] and [5]. However, the present work should be of independent interest to the logician interested in recursion theory.


1976 ◽  
Vol 41 (2) ◽  
pp. 513-530 ◽  
Author(s):  
Robert I. Soare

One of the most important and distinctive tools in recursion theory has been the priority method whereby a recursively enumerable (r.e.) set A is constructed by stages to satisfy a sequence of conditions {Rn}n∈ω called requirements. If n < m, requirement Rn is given priority over Rm and action taken for Rm at some stage s may at a later stage t > s be undone for the sake of Rn thereby injuring Rm at stage t. The first priority method was invented by Friedberg [2] and Muchnik [11] to solve Post's problem and is characterized by the fact that each requirement is injured at most finitely often.Shoenfield [20, Lemma 1], and then independently Sacks [17] and Yates [25] invented a much more powerful method in which a requirement may be injured infinitely often, and the method was applied and refined by Sacks [15], [16], [17], [18], [19] and Yates [25], [26] to obtain many deep results on r.e. sets and their degrees. In spite of numerous simplifications and variations this infinite injury method has never been as well understood as the finite injury method because of its apparently greater complexity.The purpose of this paper is to reduce the Sacks method to two easily understood lemmas whose proofs are very similar to the finite injury case. Using these lemmas we can derive all the results of Sacks on r.e. degrees, and some by Yates and Robinson as well, in a manner accessible to the nonspecialist. The heart of the method is an ingenious observation of Lachlan [7] which is combined with a further simplification of our own.


1989 ◽  
Vol 115 ◽  
pp. 165-183 ◽  
Author(s):  
C.T. Chong

This work is inspired by the recent paper of Mytilinaios and Slaman [9] on the infinite injury priority method. It may be considered to fall within the general program of the study of reverse recursion theory: What axioms of Peano arithmetic are required or sufficient to prove theorems in recursion theory? Previous contributions to this program, especially with respect to the finite and infinite injury priority methods, can be found in the works of Groszek and Mytilinaios [4], Groszek and Slaman [5], Mytilinaios [8], Slaman and Woodin [10]. Results of [4] and [9], for example, together pinpoint the existence of an incomplete, nonlow r.e. degree to be provable only within some fragment of Peano arithmetic at least as strong as P- + IΣ2. Indeed an abstract principle on infinite strategies, such as that on the construction of an incomplete high r.e. degree, was introduced in [4] and shown to be equivalent to Σ2 induction over the base theory P- + IΣ0 of Peano arithmetic.


1997 ◽  
Vol 62 (1) ◽  
pp. 197-224
Author(s):  
Kyriakos Kontostathis

The complexity of priority proofs in recursion theory has been growing since the first priority proofs in [1] and [11]. Refined versions of classic priority proofs can be found in [18]. To this date, this part of recursion theory is at about the same stage of development as real analysis was in the early days, when the notions of topology, continuity, compactness, vector space, inner product space, etc., were not invented. There were no general theorems involving these concepts to prove results about the real numbers and the proofs were repetitive and lengthy.The priority method contains an unprecedent wealth of combinatorics which is used to answer questions in recursion theory and is bound to have applications in many other fields as well. Unfortunately, very little progress has been made in finding theorems to formulate the combinatorial part of the priority method so as to answer questions without having to reprove the combinatorics in each case.Lempp and Lerman in [10] provide an overview of the subject. The entire edifice of definitions and theorems which formulate the combinatorics of the priority method has acquired the name Priority Theory. From a different vein, Groszek and Slaman in [2] have initiated a program to classify priority constructions in terms of how much induction or collection is needed to carry them out. This program studies the complexity of priority proofs and can be called Complexity Theory of Priority Proofs or simply Complexity.


1965 ◽  
Vol 30 (3) ◽  
pp. 318-338 ◽  
Author(s):  
G. Kreisel ◽  
Gerald E. Sacks

Our ultimate purpose is to give an axiomatic treatment of recursion theory sufficient to develop the priority method. The direct or abstract approach is to keep in mind as clearly as possible the methods actually used in recursion theory, and then to formulate them explicitly. The indirect or experimental approach is to look first for other mathematical theories which seem similar to recursion theory, to formulate the analogies precisely, and then to search for an axiomatic treatment which covers not only recursion theory but also the analogous theories as particular cases.The first approach is more general because it does not depend on the existence of (familiar) analogues. A concrete mathematical theory, it seems, need have no such analogues and still be important, as e.g. classical number theory. In such a case, an axiomatic treatment may still be useful for exhibiting the mathematical structure of the theory considered and the assumptions on which it rests. However, it will lack one of the most heavily advertised advantages of the axiomatic method, namely, the “economy of thought” which results from an uniform theory for several different and interesting cases: we cannot hope for this if, by hypothesis, we know of only one particular case. In contrast, the second approach, if successful at all, is bound to achieve such “economy” because we start out with several interesting particular cases. Another possible virtue of the second approach is that of field work over insight: the abstract pattern that we are looking for and hoping to formalize in axioms, may not be evident in any one mathematical theory, but may spring to the eye if one happens to look simultaneously at several theories which happen to realize the pattern.


2021 ◽  
Vol 10 (8) ◽  
pp. 501
Author(s):  
Ruichen Zhang ◽  
Shaofeng Bian ◽  
Houpu Li

The digital elevation model (DEM) is known as one kind of the most significant fundamental geographical data models. The theory, method and application of DEM are hot research issues in geography, especially in geomorphology, hydrology, soil and other related fields. In this paper, we improve the efficient sub-pixel convolutional neural networks (ESPCN) and propose recursive sub-pixel convolutional neural networks (RSPCN) to generate higher-resolution DEMs (HRDEMs) from low-resolution DEMs (LRDEMs). Firstly, the structure of RSPCN is described in detail based on recursion theory. This paper explores the effects of different training datasets, with the self-adaptive learning rate Adam algorithm optimizing the model. Furthermore, the adding-“zero” boundary method is introduced into the RSPCN algorithm as a data preprocessing method, which improves the RSPCN method’s accuracy and convergence. Extensive experiments are conducted to train the method till optimality. Finally, comparisons are made with other traditional interpolation methods, such as bicubic, nearest-neighbor and bilinear methods. The results show that our method has obvious improvements in both accuracy and robustness and further illustrate the feasibility of deep learning methods in the DEM data processing area.


2020 ◽  
Vol 26 (3-4) ◽  
pp. 268-286
Author(s):  
YONG CHENG

AbstractIn this paper, we examine the limit of applicability of Gödel’s first incompleteness theorem ($\textsf {G1}$ for short). We first define the notion “$\textsf {G1}$ holds for the theory $T$”. This paper is motivated by the following question: can we find a theory with a minimal degree of interpretation for which $\textsf {G1}$ holds. To approach this question, we first examine the following question: is there a theory T such that Robinson’s $\mathbf {R}$ interprets T but T does not interpret $\mathbf {R}$ (i.e., T is weaker than $\mathbf {R}$ w.r.t. interpretation) and $\textsf {G1}$ holds for T? In this paper, we show that there are many such theories based on Jeřábek’s work using some model theory. We prove that for each recursively inseparable pair $\langle A,B\rangle $, we can construct a r.e. theory $U_{\langle A,B\rangle }$ such that $U_{\langle A,B\rangle }$ is weaker than $\mathbf {R}$ w.r.t. interpretation and $\textsf {G1}$ holds for $U_{\langle A,B\rangle }$. As a corollary, we answer a question from Albert Visser. Moreover, we prove that for any Turing degree $\mathbf {0}< \mathbf {d}<\mathbf {0}^{\prime }$, there is a theory T with Turing degree $\mathbf {d}$ such that $\textsf {G1}$ holds for T and T is weaker than $\mathbf {R}$ w.r.t. Turing reducibility. As a corollary, based on Shoenfield’s work using some recursion theory, we show that there is no theory with a minimal degree of Turing reducibility for which $\textsf {G1}$ holds.


Sign in / Sign up

Export Citation Format

Share Document