scholarly journals Siegel modular forms and theta series attached to quaternion algebras II

1997 ◽  
Vol 147 ◽  
pp. 71-106 ◽  
Author(s):  
S. Böcherer ◽  
R. Schulze-Pillot

AbstractWe continue our study of Yoshida’s lifting, which associates to a pair of automorphic forms on the adelic multiplicative group of a quaternion algebra a Siegel modular form of degree 2. We consider here the case that the automorphic forms on the quaternion algebra correspond to modular forms of arbitrary even weights and square free levels; in particular we obtain a construction of Siegel modular forms of weight 3 attached to a pair of elliptic modular forms of weights 2 and 4.

1991 ◽  
Vol 121 ◽  
pp. 35-96 ◽  
Author(s):  
Siegfried Böcherer ◽  
Rainer Schulze-Pillot

The two main problems in the theory of the theta correspondence or lifting (between automorphic forms on some adelic orthogonal group and on some adelic symplectic or metaplectic group) are the characterization of kernel and image of this correspondence. Both problems tend to be particularly difficult if the two groups are approximately the same size.


2002 ◽  
Vol 65 (2) ◽  
pp. 239-252 ◽  
Author(s):  
Cris Poor ◽  
David S. Yuen

We study homomorphisms form the ring of Siegel modular forms of a given degree to the ring of elliptic modular forms for a congruence subgroup. These homomorphisms essentially arise from the restriction of Siegel modular forms to modular curves. These homomorphisms give rise to linear relations among the Fourier coefficients of a Siegel modular form. We use this technique to prove that dim .


Author(s):  
Siegfried Böcherer ◽  
Soumya Das

Abstract We prove that if F is a nonzero (possibly noncuspidal) vector-valued Siegel modular form of any degree, then it has infinitely many nonzero Fourier coefficients which are indexed by half-integral matrices having odd, square-free (and thus fundamental) discriminant. The proof uses an induction argument in the setting of vector-valued modular forms. Further, as an application of a variant of our result and complementing the work of A. Pollack, we show how to obtain an unconditional proof of the functional equation of the spinor L-function of a holomorphic cuspidal Siegel eigenform of degree $3$ and level $1$ .


2000 ◽  
Vol 160 ◽  
pp. 143-159
Author(s):  
Bernhard E. Heim

AbstractIn this paper a certain type of Dirichlet series, attached to a pair of Jacobi forms and Siegel modular forms is studied. It is shown that this series can be analyzed by a new variant of the Rankin-Selberg method. We prove that for eigenforms the Dirichlet series have an Euler product and we calculate all the local L-factors. Globally this Euler product is essentially the quotient of the standard L-functions of the involved Jacobi- and Siegel modular form.


2018 ◽  
Vol 70 (2) ◽  
pp. 241-264
Author(s):  
Siegfried Böcherer ◽  
Toshiyuki Kikuta ◽  
Sho Takemori

AbstractLet Θ[j] be an analogue of the Ramanujan theta operator for Siegel modular forms. For a given prime p, we give the weights of elements of mod p kernel of Θ[j], where the mod p kernel of Θ[j] is the set of all Siegel modular forms F such that Θ[j](F) is congruent to zero modulo p. In order to construct examples of the mod p kernel of Θ[j] fromany Siegel modular form, we introduce new operators A(j)(M) and show the modularity of F|A(j)(M) when F is a Siegel modular form. Finally, we give some examples of the mod p kernel of Θ[j] and the filtrations of some of them.


2017 ◽  
Vol 153 (7) ◽  
pp. 1391-1432
Author(s):  
Aaron Pollack

We give a Rankin–Selberg integral representation for the Spin (degree eight) $L$-function on $\operatorname{PGSp}_{6}$ that applies to the cuspidal automorphic representations associated to Siegel modular forms. If $\unicode[STIX]{x1D70B}$ corresponds to a level-one Siegel modular form $f$ of even weight, and if $f$ has a nonvanishing maximal Fourier coefficient (defined below), then we deduce the functional equation and finiteness of poles of the completed Spin $L$-function $\unicode[STIX]{x1D6EC}(\unicode[STIX]{x1D70B},\text{Spin},s)$ of $\unicode[STIX]{x1D70B}$.


1986 ◽  
Vol 102 ◽  
pp. 51-77 ◽  
Author(s):  
Yoshio Tanigawa

In [8], H. Maass introduced the ‘Spezialschar’ which is now called the Maass space. It is defined by the relation of the Fourier coefficients of modular forms as follows. Let f be a Siegel modular form on Sp(2,Z) of weight k, and let be its Fourier expansion, where . Then f belongs to the Maass space if and only if


2016 ◽  
Vol 28 (6) ◽  
Author(s):  
Siegfried Böcherer ◽  
Toshiyuki Kikuta

AbstractWe show that a Siegel modular form with integral Fourier coefficients in a number field


2012 ◽  
Vol 12 (3) ◽  
pp. 571-634 ◽  
Author(s):  
Jens Funke ◽  
John Millson

AbstractIn our previous paper [J. Funke and J. Millson, Cycles with local coefficients for orthogonal groups and vector-valued Siegel modular forms, American J. Math. 128 (2006), 899–948], we established a correspondence between vector-valued holomorphic Siegel modular forms and cohomology with local coefficients for local symmetric spaces $X$ attached to real orthogonal groups of type $(p, q)$. This correspondence is realized using theta functions associated with explicitly constructed ‘special’ Schwartz forms. Furthermore, the theta functions give rise to generating series of certain ‘special cycles’ in $X$ with coefficients.In this paper, we study the boundary behaviour of these theta functions in the non-compact case and show that the theta functions extend to the Borel–Sere compactification $ \overline{X} $ of $X$. However, for the $ \mathbb{Q} $-split case for signature $(p, p)$, we have to construct and consider a slightly larger compactification, the ‘big’ Borel–Serre compactification. The restriction to each face of $ \overline{X} $ is again a theta series as in [J. Funke and J. Millson, loc. cit.], now for a smaller orthogonal group and a larger coefficient system.As an application we establish in certain cases the cohomological non-vanishing of the special (co)cycles when passing to an appropriate finite cover of $X$. In particular, the (co)homology groups in question do not vanish. We deduce as a consequence a sharp non-vanishing theorem for ${L}^{2} $-cohomology.


Sign in / Sign up

Export Citation Format

Share Document