scholarly journals Boundary behaviour of special cohomology classes arising from the Weil representation

2012 ◽  
Vol 12 (3) ◽  
pp. 571-634 ◽  
Author(s):  
Jens Funke ◽  
John Millson

AbstractIn our previous paper [J. Funke and J. Millson, Cycles with local coefficients for orthogonal groups and vector-valued Siegel modular forms, American J. Math. 128 (2006), 899–948], we established a correspondence between vector-valued holomorphic Siegel modular forms and cohomology with local coefficients for local symmetric spaces $X$ attached to real orthogonal groups of type $(p, q)$. This correspondence is realized using theta functions associated with explicitly constructed ‘special’ Schwartz forms. Furthermore, the theta functions give rise to generating series of certain ‘special cycles’ in $X$ with coefficients.In this paper, we study the boundary behaviour of these theta functions in the non-compact case and show that the theta functions extend to the Borel–Sere compactification $ \overline{X} $ of $X$. However, for the $ \mathbb{Q} $-split case for signature $(p, p)$, we have to construct and consider a slightly larger compactification, the ‘big’ Borel–Serre compactification. The restriction to each face of $ \overline{X} $ is again a theta series as in [J. Funke and J. Millson, loc. cit.], now for a smaller orthogonal group and a larger coefficient system.As an application we establish in certain cases the cohomological non-vanishing of the special (co)cycles when passing to an appropriate finite cover of $X$. In particular, the (co)homology groups in question do not vanish. We deduce as a consequence a sharp non-vanishing theorem for ${L}^{2} $-cohomology.

2015 ◽  
Vol 26 (05) ◽  
pp. 1550034 ◽  
Author(s):  
Fabien Cléry ◽  
Gerard van der Geer ◽  
Samuel Grushevsky

We study vector-valued Siegel modular forms of genus 2 on the three level 2 groups Γ[2] ◁ Γ1[2] ◁ Γ0[2] ⊂ Sp(4, ℤ). We give generating functions for the dimension of spaces of vector-valued modular forms, construct various vector-valued modular forms by using theta functions and describe the structure of certain modules of vector-valued modular forms over rings of scalar-valued Siegel modular forms.


2020 ◽  
Vol 26 (5) ◽  
Author(s):  
Tomoyoshi Ibukiyama

AbstractHolomorphic vector valued differential operators acting on Siegel modular forms and preserving automorphy under the restriction to diagonal blocks are important in many respects, including application to critical values of L functions. Such differential operators are associated with vectors of new special polynomials of several variables defined by certain harmonic conditions. They include the classical Gegenbauer polynomial as a prototype, and are interesting as themselves independently of Siegel modular forms. We will give formulas for all such polynomials in two different ways. One is to describe them using polynomials characterized by monomials in off-diagonal block variables. We will give an explicit and practical algorithm to give the vectors of polynomials through these. The other one is rather theoretical but seems much deeper. We construct an explicit generating series of polynomials mutually related under certain mixed Laplacians. Here substituting the variables of the polynomials to partial derivatives, we obtain the generic differential operator from which any other differential operators of this sort are obtained by certain projections. This process exhausts all the differential operators in question. This is also generic in the sense that for any number of variables and block partitions, it is given by a recursive unified expression. As an application, we prove that the Taylor coefficients of Siegel modular forms with respect to off-diagonal block variables, or of corresponding expansion of Jacobi forms, are essentially vector valued Siegel modular forms of lower degrees, which are obtained as images of the differential operators given above. We also show that the original forms are recovered by the images of our operators. This is an ultimate generalization of Eichler–Zagier’s results on Jacobi forms of degree one. Several more explicit results and practical construction are also given.


2019 ◽  
Vol 16 (01) ◽  
pp. 29-64
Author(s):  
Joshua Males

We introduce and investigate an infinite family of functions which are shown to have generalized quantum modular properties. We realize their “companions” in the lower half plane both as double Eichler integrals and as non-holomorphic theta functions with coefficients given by double error functions. Further, we view these Eichler integrals in a modular setting as parts of certain weight two indefinite theta series.


Author(s):  
Thanasis Bouganis ◽  
Salvatore Mercuri

In this work, we use the Rankin–Selberg method to obtain results on the analytic properties of the standard [Formula: see text]-function attached to vector-valued Siegel modular forms. In particular we provide a detailed description of its possible poles and obtain a non-vanishing result of the twisted [Formula: see text]-function beyond the usual range of absolute convergence. Our results include also the case of metaplectic Siegel modular forms. We remark that these results were known in this generality only in the case of scalar weight Siegel modular forms. As an interesting by-product of our work we establish the cuspidality of some theta series.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Brandon Williams

Abstract We apply differential operators to modular forms on orthogonal groups O ⁢ ( 2 , ℓ ) {\mathrm{O}(2,\ell)} to construct infinite families of modular forms on special cycles. These operators generalize the quasi-pullback. The subspaces of theta lifts are preserved; in particular, the higher pullbacks of the lift of a (lattice-index) Jacobi form ϕ are theta lifts of partial development coefficients of ϕ. For certain lattices of signature ( 2 , 2 ) {(2,2)} and ( 2 , 3 ) {(2,3)} , for which there are interpretations as Hilbert–Siegel modular forms, we observe that the higher pullbacks coincide with differential operators introduced by Cohen and Ibukiyama.


2018 ◽  
Vol 154 (10) ◽  
pp. 2090-2149 ◽  
Author(s):  
Stephan Ehlen ◽  
Siddarth Sankaran

Our aim is to clarify the relationship between Kudla’s and Bruinier’s Green functions attached to special cycles on Shimura varieties of orthogonal and unitary type, which play a key role in the arithmetic geometry of these cycles in the context of Kudla’s program. In particular, we show that the generating series obtained by taking the differences of the two families of Green functions is a non-holomorphic modular form and has trivial (cuspidal) holomorphic projection. Along the way, we construct a section of the Maaß lowering operator for moderate growth forms valued in the Weil representation using a regularized theta lift, which may be of independent interest, as it in particular has applications to mock modular forms. We also consider arithmetic-geometric applications to integral models of $U(n,1)$ Shimura varieties. Each family of Green functions gives rise to a formal arithmetic theta function, valued in an arithmetic Chow group, that is conjectured to be modular; our main result is the modularity of the difference of the two arithmetic theta functions. Finally, we relate the arithmetic heights of the special cycles to special derivatives of Eisenstein series, as predicted by Kudla’s conjecture, and describe a refinement of a theorem of Bruinier, Howard and Yang on arithmetic intersections against CM points.


1991 ◽  
Vol 121 ◽  
pp. 35-96 ◽  
Author(s):  
Siegfried Böcherer ◽  
Rainer Schulze-Pillot

The two main problems in the theory of the theta correspondence or lifting (between automorphic forms on some adelic orthogonal group and on some adelic symplectic or metaplectic group) are the characterization of kernel and image of this correspondence. Both problems tend to be particularly difficult if the two groups are approximately the same size.


Sign in / Sign up

Export Citation Format

Share Document