scholarly journals Azumaya’s Canonical Module and Completions of Algebras

1973 ◽  
Vol 49 ◽  
pp. 9-19 ◽  
Author(s):  
James Osterburg

We are concerned with an algebra S over a commutative ring. Precisely S is a non-commutative ring with identity which is also a finitely generated unital R module such that r(xy) = (rx)y = x(ry) for r in R and x, y ∈ S. In section one, we assume A is a commutative, Artinian ring. Following Goro Azumaya (see (1, p. 273)), we define the canonical module F of A to be the injective hull of A modulo the Jacobson radical of A i.e. F = I(A/J(A)).

1979 ◽  
Vol 28 (3) ◽  
pp. 335-345 ◽  
Author(s):  
Nicholas S. Ford

AbstractLet R be a commutative ring with identity, and let A be a finitely generated R-algebra with Jacobson radical N and center C. An R-inertial subalgebra of A is a R-separable subalgebra B with the property that B+N=A. Suppose A is separable over C and possesses a finite group G of R-automorphisms whose restriction to C is faithful with fixed ring R. If R is an inertial subalgebra of C, necessary and sufficient conditions for the existence of an R-inertial subalgebra of A are found when the order of G is a unit in R. Under these conditions, an R-inertial subalgebra B of A is characterized as being the fixed subring of a group of R-automorphisms of A. Moreover, A ⋍ B ⊗R C. Analogous results are obtained when C has an R-inertial subalgebra S ⊃ R.


1985 ◽  
Vol 37 (3) ◽  
pp. 452-466 ◽  
Author(s):  
S. K. Jain ◽  
D. S. Malik

A ring R is called q-hypercyclic (hypercyclic) if each cyclic ring R-module has a cyclic quasi-injective (injective) hull. A ring R is called a qc-ring if each cyclic right R-module is quasi-injective. Hypercyclic rings have been studied by Caldwell [4], and by Osofsky [12]. A characterization of qc-rings has been given by Koehler [10]. The object of this paper is to study q-hypercyclic rings. For a commutative ring R, R can be shown to be q-hypercyclic (= qc-ring) if R is hypercyclic. (Theorems 4.2 and 4.3). Whether a hypercyclic ring (not necessarily commutative) is q-hypercyclic is considered in Theorem 3.11 by showing that a local hypercyclic ring R is q-hypercyclic if and only if the Jacobson radical of R is nil. However, we do not know if there exists a local hypercyclic ring with nonnil radical [12]. Example 3.10 shows that a q-hypercyclic ring need not be hypercyclic.


1971 ◽  
Vol 12 (2) ◽  
pp. 118-135 ◽  
Author(s):  
D. J. Moore

Let R be a commutative ring with an identity element, E a (unitary) R-module, and x1, x2, …, xs elements of R. In these circumstances it is possible to form the Koszul complex† K(x1, x2, …, xs|E) of E with respect to x1, x2,…, xs and to investigate the implications, for E and xl, x2, …, xs, if certain of the homology modules of this complex vanish. This was first undertaken by M. Auslander and D. A. Buchsbaum [1]. Among the many results they obtain, the following [1, Proposition 2.8, p. 632] is of particular interest in connection with the present paper:If R is Noetherian, E is finitely generated, and x1x2,…, xs belong to the Jacobson radical of R, then the statements(a) x1, x2,…, xsis an R-sequence on E,(b) HpK(x1, x2,…,xs⃒E) = O for all p > 0,(c) H1K(x1, x2,…., xs,⃒E) = 0,are all equivalent.


1993 ◽  
Vol 78 (1) ◽  
pp. 201-221 ◽  
Author(s):  
Robert Gilmer ◽  
William Heinzer

2017 ◽  
Vol 60 (2) ◽  
pp. 319-328
Author(s):  
Soheila Khojasteh ◽  
Mohammad Javad Nikmehr

AbstractLet R be a commutative ring with non-zero identity. In this paper, we introduce theweakly nilpotent graph of a commutative ring. The weakly nilpotent graph of R denoted by Γw(R) is a graph with the vertex set R* and two vertices x and y are adjacent if and only if x y ∊ N(R)*, where R* = R \ {0} and N(R)* is the set of all non-zero nilpotent elements of R. In this article, we determine the diameter of weakly nilpotent graph of an Artinian ring. We prove that if Γw(R) is a forest, then Γw(R) is a union of a star and some isolated vertices. We study the clique number, the chromatic number, and the independence number of Γw(R). Among other results, we show that for an Artinian ring R, Γw(R) is not a disjoint union of cycles or a unicyclic graph. For Artinan rings, we determine diam . Finally, we characterize all commutative rings R for which is a cycle, where is the complement of the weakly nilpotent graph of R.


2017 ◽  
Vol 37 (1) ◽  
pp. 153-168
Author(s):  
Hosein Fazaeli Moghimi ◽  
Batool Zarei Jalal Abadi

‎Let $R$ be a commutative ring with identity‎, ‎and $n\geq 1$ an integer‎. ‎A proper submodule $N$ of an $R$-module $M$ is called‎ ‎an $n$-prime submodule if whenever $a_1 \cdots a_{n+1}m\in N$ for some non-units $a_1‎, ‎\ldots‎ , ‎a_{n+1}\in R$ and $m\in M$‎, ‎then $m\in N$ or there are $n$ of the $a_i$'s whose product is in $(N:M)$‎. ‎In this paper‎, ‎we study $n$-prime submodules as a generalization of prime submodules‎. ‎Among other results‎, ‎it is shown that if $M$ is a finitely generated faithful multiplication module over a Dedekind domain $R$‎, ‎then every $n$-prime submodule of $M$ has the form $m_1\cdots m_t M$ for some maximal ideals $m_1,\ldots,m_t$ of $R$ with $1\leq t\leq n$‎.


2011 ◽  
Vol 10 (03) ◽  
pp. 475-489 ◽  
Author(s):  
PINAR AYDOĞDU ◽  
A. ÇIĞDEM ÖZCAN ◽  
PATRICK F. SMITH

Let R be a ring. Modules satisfying ascending or descending chain conditions (respectively, acc and dcc) on non-summand submodules belongs to some particular classes [Formula: see text], such as the class of all R-modules, finitely generated, finite-dimensional and cyclic modules, are considered. It is proved that a module M satisfies acc (respectively, dcc) on non-summands if and only if M is semisimple or Noetherian (respectively, Artinian). Over a right Noetherian ring R, a right R-module M satisfies acc on finitely generated non-summands if and only if M satisfies acc on non-summands; a right R-module M satisfies dcc on finitely generated non-summands if and only if M is locally Artinian. Moreover, if a ring R satisfies dcc on cyclic non-summand right ideals, then R is a semiregular ring such that the Jacobson radical J is left t-nilpotent.


2014 ◽  
Vol 21 (02) ◽  
pp. 249-256 ◽  
Author(s):  
G. Aalipour ◽  
S. Akbari ◽  
M. Behboodi ◽  
R. Nikandish ◽  
M. J. Nikmehr ◽  
...  

Let R be a commutative ring and 𝔸(R) be the set of ideals with non-zero annihilators. The annihilating-ideal graph of R is defined as the graph 𝔸𝔾(R) with the vertex set 𝔸(R)* = 𝔸(R)\{(0)} and two distinct vertices I and J are adjacent if and only if IJ = (0). Here, we present some results on the clique number and the chromatic number of the annihilating-ideal graph of a commutative ring. It is shown that if R is an Artinian ring and ω (𝔸𝔾(R)) = 2, then R is Gorenstein. Also, we investigate commutative rings whose annihilating-ideal graphs are complete or bipartite.


Author(s):  
David A. Hill

AbstractA module is uniserial if its lattice of submodules is linearly ordered, and a ring R is left serial if R is a direct sum of uniserial left ideals. The following problem is considered. Suppose the injective hull of each simple left R-module is uniserial. When does this imply that the indecomposable injective left R-modules are uniserial? An affirmative answer is known when R is commutative and when R is Artinian. The following result is proved.Let R be a left serial ring and suppose that for each primitive idempotent e, eRe has indecomposable injective left modules uniserial. The following conditions are equivalent. (a) The injective hull of each simple left R-module is uniserial. (b) Every indecomposable injective left R-module is univerial. (c) Every finitely generated left R-module is serial.The rest of the paper is devoted to a study of some non-Artinian serial rings which serve to illustrate this theorem.


Sign in / Sign up

Export Citation Format

Share Document