scholarly journals Boundary Isomorphism between Dirichlet Finite Solutions of Δu = Pu and Harmonic Functions

1973 ◽  
Vol 50 ◽  
pp. 7-20 ◽  
Author(s):  
Ivan J. Singer

Consider an open Riemann surface R and a density P(z)dxdy (z = x + iy), well defined on R. As was shown by Myrberg in [3], if P ≢ 0 is a nonnegative α-Hölder continuous density on R (0 < α ≤ 1) then there exists the Green’s functions of the differential equationp>on R, where Δ means the Laplace operator. As a consequence, there always exists a nontrivial solution on R.

1993 ◽  
Vol 132 ◽  
pp. 131-139
Author(s):  
Michihiko Kawamura ◽  
Shigeo Segawa

Consider an end Ω in the sense of Heins (cf. Heins [3]): Ω is a relatively non-compact subregion of an open Riemann surface such that the relative boundary ∂Ω consists of finitely many analytic Jordan closed curves, there exist no non-constant bounded harmonic functions with vanishing boundary values on ∂Ω and Ω has a single ideal boundary component. A density P = P(z)dxdy (z = x + iy) is a 2-form on Ω∩∂Ω with nonnegative locally Holder continuous coefficient P(z).


Author(s):  
Manki Cho

Purpose This paper aims to present a meshless technique to find the Green’s functions for solutions of Laplacian boundary value problems on rectangular domains. This paper also investigates a theoretical basis for the Steklov series expansion methods to reduce and estimate the error of numerical approaches for the boundary correction kernel of the Laplace operator. Design/methodology/approach The main interest is how the Green's functions differ from the fundamental solution of the Laplace operator. Steklov expansion methods for finding the correction term are supported by the analysis that bases of the class of all finite harmonic functions can be formed using harmonic Steklov eigenfunctions. These functions construct a basis of the space of solutions of harmonic boundary value problems and their boundary traces generate an orthogonal basis of the trace space of solutions on the boundary. Findings The main conclusion is that the boundary correction term for the Green's functions is well-approximated by Steklov expansions with a few Steklov eigenfunctions. The error estimates for the Steklov approximations of the boundary correction term involved in Dirichlet or Robin boundary value problems are found. They appear to provide very good approximations in the interior of the region and become quite oscillatory close to the boundary. Originality/value This paper concentrates to document the first attempt to find the Green's function for various harmonic boundary value problems with the explicit Steklov eigenfunctions without concerns regarding discretizations when the region is a rectangle.


1949 ◽  
Vol 1 (3) ◽  
pp. 242-256 ◽  
Author(s):  
S. Minakshisundaram ◽  
Å. Pleijel

Let V be a connected, compact, differentiable Riemannian manifold. If V is not closed we denote its boundary by S. In terms of local coordinates (xi), i = 1, 2, … Ν, the line-element dr is given by where gik (x1, x2, … xN) are the components of the metric tensor on V We denote by Δ the Beltrami-Laplace-Operator and we consider on V the differential equation (1) Δu + λu = 0.


1961 ◽  
Vol 18 ◽  
pp. 111-131 ◽  
Author(s):  
Mitsuru Nakai

Let R be an open Riemann surface. By a density P on R we mean a non-negative and continuously differentiable functions P(z) of local parameters z = x + iy such that the expression P(z)dxdy is invariant under the change of local parameters z. In this paper we always assume that P≢0 unless the contrary is explicitly mentioned. We consider an elliptic partial differential equationwhich is invariantly defined on R.


1975 ◽  
Vol 56 ◽  
pp. 1-5
Author(s):  
Masaru Hara

Given a harmonic function u on a Riemann surface R, we define a period functionfor every one-dimensional cycle γ of the Riemann surface R. Γx(R) denote the totality of period functions Γu such that harmonic functions u satisfy a boundedness property X. As for X, we let B stand for boundedness, and D for the finiteness of the Dirichlet integral.


2020 ◽  
Vol 18 (1) ◽  
pp. 1518-1530
Author(s):  
Xuesen Qi ◽  
Ximin Liu

Abstract In this paper, we discuss the monotonicity of the first nonzero eigenvalue of the Laplace operator and the p-Laplace operator under a forced mean curvature flow (MCF). By imposing conditions associated with the mean curvature of the initial hypersurface and the coefficient function of the forcing term of a forced MCF, and some special pinching conditions on the second fundamental form of the initial hypersurface, we prove that the first nonzero closed eigenvalues of the Laplace operator and the p-Laplace operator are monotonic under the forced MCF, respectively, which partially generalize Mao and Zhao’s work. Moreover, we give an example to specify applications of conclusions obtained above.


Sign in / Sign up

Export Citation Format

Share Document