scholarly journals Trends in Galaxy Formation and Evolution in the Context of the Virial and Fundamental Planes

1999 ◽  
Vol 186 ◽  
pp. 195-195
Author(s):  
Tapan K. Chatterjee ◽  
V.B. Magalinsky

The kinetic description of gravitating systems has acquired vital importance in the context of trends in galaxy formation and evolution as evidenced by the existence of the virial and fundamental planes. The fundamental plane deviates for brighter and fainter ellipticals; until the brightest cluster members (BCMs), whose structures have been most modified by interactions, seem to occupy a fundamental plane with a different slope as compared to normal ellipticals. Extending the work of Magalinsky (1972, AZh, 49, 1017; Sov. Astron.-AJ, 16, 830), the Vlasov equation is applied to study small perturbations (considered as protogalaxies) of the exact solution corresponding to a spatially homogeneous medium in expansion. It is found that a perturbation attains a saturated size whose scale length, as a function of a reduced parameter of evolution (in terms of the characteristic frequency of dispersion of momenta, τ), R(τ) ∝ K.E./P.E. ∝ (K.E.)2/σ ∝ (δV)2/Proj.density ∝ σ2/I, which has the parametric form of the virial plane. The subsequent evolution is characterized principally by the variation of the energy due to the gravitational interactions between stars (considered as mass points), given by the potential energy such that the harmonic mean separation scale (between stars) characterizes this evolution. In this stage of the evolution the harmonic scale separation has the parametric form, 〈r−1〉 ∝ (K.E.)1/2, and 〈r−1〉 ∝ (P-E.) such that 〈r−1〉 ∝ (K.E.)1/2/(P.E.) ∝ σ/I. Notice that this is the parametric form of the fundamental plane of evolved ellipticals since the harmonic scale separation determines a physically significant scale.

2018 ◽  
Vol 14 (A30) ◽  
pp. 197-202
Author(s):  
Francoise Combes

AbstractAngular momentum (AM) is a key parameter to understand galaxy formation and evolution. AM originates in tidal torques between proto-structures at turn around, and from this the specific AM is expected to scale as a power-law of slope 2/3 with mass. However, subsequent evolution re-shuffles this through matter accretion from filaments, mergers, star formation and feedback, secular evolution and AM exchange between baryons and dark matter. Outer parts of galaxies are essential to study since they retain most of the AM and the diagnostics of the evolution. Galaxy IFU surveys have recently provided a wealth of kinematical information in the local universe. In the future, we can expect more statistics in the outer parts, and evolution at high z, including atomic gas with SKA.


2012 ◽  
Vol 8 (S295) ◽  
pp. 232-232
Author(s):  
Dimitri A. Gadotti

AbstractUsing results from parametric multi-component multi-band image fitting of 1000 local massive galaxies in the SDSS, I investigate scaling relations of elliptical galaxies and bulges of disk galaxies. I show that ellipticals and bulges occupy different loci in both the edge-on and face-on views of the fundamental plane. In addition, ellipticals and bulges have offset mass-size relations (see Fig. 1). These results imply that massive bulges are not just massive ellipticals with a surrounding disk, a misconception driven by early studies. This is evidence that massive ellipticals and bulges have different formation histories, with important consequences for studies on galaxy formation and evolution. Full details can be seen in Gadotti (2009).


2009 ◽  
Vol 5 (S267) ◽  
pp. 464-464
Author(s):  
J. A. Vázquez-Mata ◽  
H. M. Hernández-Toledo ◽  
Changbom Park ◽  
Yun-Young Choi

We present a new catalog of isolated galaxies (coined as UNAM–KIAS) obtained through an automated systematic search. The 1520 isolated galaxies were found in ~ 1.4 steradians of the sky in the Sloan Digital Sky Survey Data Release 5 (SDSS DR5) photometry. The selection algorithm was implemented from a variation of the criteria developed by Karachentseva (1973), with full redshift information. This new catalog is aimed to carry out comparative studies of environmental effects and constraining the currently competing scenarios of galaxy formation and evolution.


2013 ◽  
Vol 9 (S304) ◽  
pp. 419-420
Author(s):  
Gabriel A. Ohanian

AbstractKey questions, which arise when one tries to clear up a problem of formation and evolution of galaxies, is the question of energy: what is the energetic budget of AGN owing to form galaxies and provide its subsequent development? Hence, for understanding the formation and evolution of galaxies, it is important to estimate the energetic budget of AGN which we try to do involving radio loud phase of nuclear activity.


2006 ◽  
Vol 2 (S235) ◽  
pp. 300-300
Author(s):  
R.O. Amorín ◽  
J.A.L. Aguerri ◽  
L.M. Cairós ◽  
N. Caon ◽  
C. Muñoz-Tuñón

AbstractBlue compact dwarf (BCD) galaxies are gas-rich, low-luminosity (Mb≳-18 mag) and compact systems, currently undergoing violent star-formation burst (Sargent & Searle 1970). While it was initially hypothesized that they were very young galaxies (e.g. Sargent & Searle 1970, et al. 1988), the subsecuent detection of an extended, redder stellar host galaxy showed that the vast majority of them are old systems (e.g. Gil de Paz et al. 2003,2005). BCDs play an important role for understanding the process of galaxy formation and evolution.The structural properties of the low surface brightness stellar host in BCDs are often studied by fitting r1/n models to the outer regions of their radial profiles. The limitations imposed by the presence of a large starburst emission overlapping the underlying component makes this kind of analysis a difficult task.We propose a two-dimensional fitting methodology in order to improve the extraction of the structural parameters of the LSB host Amorín et al. 2006, submitted). A set of ideal simulations are presented in order to test the reliability of the method and to determine its robustness and flexibility. We present the different steps of the method discussing its advantages and weaknesses. We compare the results for a sample of eight objects with those already obtained using a one-dimensional technique (Caon et al. 2005).We fit a PSF convolved Sérsic model to the BVR images with the GALFIT publicly software (Peng et al. 2002). We restrict the fit to the stellar host by masking out the starburst region and take special care to minimize the sky-subtraction uncertainties. Consistency checks are performed to assess the reliability and accuracy of the derived structural parameters.We obtain robust fits for all the sample galaxies, all of which, except one, show low Sérsic indices n—very close to 1—with good agreement in the three bands. These findings suggest that the stellar hosts in BCDs have near-exponential profiles. Since the Sérsic index n of host galaxies is important in the context of the possible structural and evolutionary connections among the different types of dwarf galaxies, we are currently extending the study to a larger sample of objects. This kind of studies will help us to understand the mechanisms that form and shape BCD galaxies, and how they relate to the other dwarf galaxy classes.


Author(s):  
Mauro D’Onofrio ◽  
Paola Marziani ◽  
Cesare Chiosi

We review the properties of the established Scaling Relations (SRs) of galaxies and active galactic nuclei (AGN), focusing on their origin and expected evolution back in time, providing a short history of the most important progresses obtained up to now and discussing the possible future studies. We also try to connect the observed SRs with the physical mechanisms behind them, examining to what extent current models reproduce the observational data. The emerging picture clarifies the complexity intrinsic to the galaxy formation and evolution process as well as the basic uncertainties still affecting our knowledge of the AGN phenomenon. At the same time, however, it suggests that the detailed analysis of the SRs can profitably contribute to our understanding of galaxies and AGN.


Sign in / Sign up

Export Citation Format

Share Document