gravitating systems
Recently Published Documents


TOTAL DOCUMENTS

308
(FIVE YEARS 41)

H-INDEX

31
(FIVE YEARS 3)

Author(s):  
M. Fathi ◽  
J.R. Villanueva

In this paper, we mainly aim at highlighting the importance of (hyper-)elliptic integrals in the study of gravitational effects caused by strongly gravitating systems. For this, we study the application of elliptic integrals in calculating the light deflection as it passes a plasmic medium, surrounding a charged Weyl black hole. To proceed with this, we consider two specific algebraic ansatzes for the plasmic refractive index, and we characterize the photon sphere for each of the cases. This will be used further to calculate the angular diameter of the corresponding black hole shadow. We show that the complexity of the refractive index expressions, can result in substantially different types of dependencies of the light behavior on the spacetime parameters. В этой статье мы в основном стремимся подчеркнуть важность (гипер) эллиптических интегралов в изучении гравитационных эффектов, вызванных сильно гравитирующими системами. Для этого мы изучаем применение эллиптических интегралов при вычислении отклонения света при его прохождении через плазменную среду, окружающую заряженную черную дыру Вейля. Чтобы продолжить это, мы рассмотрим два конкретных алгебраических анзаца для показателя преломления плазмы и охарактеризуем фотонную сферу для каждого из случаев. Это будет использоваться в дальнейшем для вычисления углового диаметра соответствующей тени черной дыры. Мы показываем, что сложность выражений показателя преломления может привести к существенно разным типам зависимостей поведения света от пространственно-временных параметров.


Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1400
Author(s):  
Byron P. Brassel ◽  
Sunil D. Maharaj ◽  
Rituparno Goswami

We consider the energy conditions for a dissipative matter distribution. The conditions can be expressed as a system of equations for the matter variables. The energy conditions are then generalised for a composite matter distribution; a combination of viscous barotropic fluid, null dust and a null string fluid is also found in a spherically symmetric spacetime. This new system of equations comprises the energy conditions that are satisfied by a Type I fluid. The energy conditions for a Type II fluid are also presented, which are reducible to the Type I fluid only for a particular function. This treatment will assist in studying the complexity of composite relativistic fluids in particular self-gravitating systems.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Vijay Balasubramanian ◽  
Ben Craps ◽  
Mikhail Khramtsov ◽  
Edgar Shaghoulian

Abstract We illustrate scenarios in which Hawking radiation collected in finite regions of a reservoir provides temporary access to the interior of black holes through transient entanglement “islands.” Whether these islands appear and the amount of time for which they dominate — sometimes giving way to a thermalization transition — is controlled by the amount of radiation we probe. In the first scenario, two reservoirs are coupled to an eternal black hole. The second scenario involves two holographic quantum gravitating systems at different temperatures interacting through a Rindler-like reservoir, which acts as a heat engine maintaining thermal equilibrium. The latter situation, which has an intricate phase structure, describes two eternal black holes radiating into each other through a shared reservoir.


Entropy ◽  
2021 ◽  
Vol 23 (9) ◽  
pp. 1158
Author(s):  
Mohammad Hossein Zhoolideh Zhoolideh Haghighi ◽  
Sohrab Rahvar ◽  
Mohammad Reza Rahimi Rahimi Tabar

We study the statistical mechanics of binary systems under the gravitational interaction of the Modified Newtonian Dynamics (MOND) in three-dimensional space. Considering the binary systems in the microcanonical and canonical ensembles, we show that in the microcanonical systems, unlike the Newtonian gravity, there is a sharp phase transition, with a high-temperature homogeneous phase and a low-temperature clumped binary one. Defining an order parameter in the canonical systems, we find a smoother phase transition and identify the corresponding critical temperature in terms of the physical parameters of the binary system.


Universe ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. 308
Author(s):  
Luisberis Velazquez

After reviewing several aspects about the thermodynamics of self-gravitating systems that undergo the evaporation (escape) of their constituents, some recent results obtained in the framework of fermionic King model are applied here to the analysis of galactic halos considering warm dark matter (WDM) particles. According to the present approach, the reported structural parameters of dwarf galaxies are consistent with the existence of a WDM particle with mass in the keV scale. Assuming that the dwarf galaxy Willman 1 belongs to the region III of fermionic King model (whose gravothermal collapse is a continuous phase transition), one obtains the interval 1.2 keV ≤ m ≤ 2.6 keV for the mass of WDM particle. This analysis improves previous estimates by de Vega and co-workers [Astropart. Phys. 46 (2013) 14–22] considering both the quantum degeneration and the incidence of the constituents evaporation. This same analysis evidences that most of galaxies are massive enough to undergo a violent gravothermal collapse (a discontinuous microcanonical phase transition) that leads to the formation of a degenerate core of WDM particles. It is also suggested that quantum-relativistic processes governing the cores of large galaxies (e.g., the formation of supermassive black holes) are somehow related to the gravothermal collapse of the WDM degenerate cores when the total mass of these systems are comparable to the quantum-relativistic characteristic mass Mc=ℏc/G3/2m−2≃1012M⊙ obtained for WDM particles with mass m in the keV scale. The fact that a WDM particle with mass in the keV scale seems to be consistent with the observed properties of dwarf and large galaxies provides a strong support to this dark matter candidate.


2021 ◽  
pp. 2150145
Author(s):  
M. Sharif ◽  
Shehrbano Ahmed

This paper is devoted for the formulation of new anisotropic solutions for non-static spherically symmetric self-gravitating systems through gravitational decoupling technique. Initially, we add a gravitational source in the perfect matter distribution for inducing the effects of anisotropy in the considered model. We then decouple the field equations through minimal geometric deformation approach and derive three new anisotropic solutions. Among these, two anisotropic solutions are evaluated by applying specific constraints on anisotropic source and the third solution is obtained by employing the barotropic equation of state. The physical acceptability and stability of the anisotropic models are investigated through energy conditions and causality condition, respectively. We conclude that all the derived anisotropic solutions are physically viable as well as stable.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Seamus Fallows ◽  
Simon F. Ross

Abstract We investigate the appearance of islands when a closed universe with gravity is entangled with a non-gravitating quantum system. We use braneworlds in three-dimensional multiboundary wormhole geometries as a model to explore what happens when the non-gravitating system has several components. The braneworld can be either completely contained in the entanglement wedge of one of the non-gravitating systems or split between them. In the former case, entanglement with the other system leads to a mixed state in the closed universe, unlike in simpler setups with a single quantum system, where the closed universe was necessarily in a pure state. We show that the entropy of this mixed state is bounded by half of the coarse-grained entropy of the effective theory on the braneworld.


2021 ◽  
Vol 81 (7) ◽  
Author(s):  
M. Sharif ◽  
Mariyah Aslam

AbstractThe objective of this paper is to discuss anisotropic solutions representing static spherical self-gravitating systems in f(R) theory. We employ the extended gravitational decoupling approach and transform temporal as well as radial metric potentials which decomposes the system of non-linear field equations into two arrays: one set corresponding to seed source and the other one involves additional source terms. The domain of the isotropic solution is extended in the background of f(R) Starobinsky model by employing the metric potentials of Krori–Barua spacetime. We determine two anisotropic solutions by employing some physical constraints on the extra source. The values of unknown constants are computed by matching the interior and exterior spacetimes. We inspect the physical viability, equilibrium and stability of the obtained solutions corresponding to the star Her X-I. It is observed that one of the two extensions satisfies all the necessary physical requirements for particular values of the decoupling parameter.


Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 802
Author(s):  
Luis Herrera

In recent decades many efforts have been made towards a rigorous definition of complexity in different branches of science (see [...]


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kamel Ourabah

AbstractDistributions different from those predicted by equilibrium statistical mechanics are commonplace in a number of physical situations, such as plasmas and self-gravitating systems. The best strategy for probing these distributions and unavailing their origins consists in combining theoretical knowledge with experiments, involving both direct and indirect measurements, as those associated with dispersion relations. This paper addresses, in a quite general context, the signature of nonequilibrium distributions in dispersion relations. We consider the very general scenario of distributions corresponding to a superposition of equilibrium distributions, that are well-suited for systems exhibiting only local equilibrium, and discuss the general context of systems obeying the combination of the Schrödinger and Poisson equations, while allowing the Planck’s constant to smoothly go to zero, yielding the classical kinetic regime. Examples of media where this approach is applicable are plasmas, gravitational systems, and optical molasses. We analyse in more depth the case of classical dispersion relations for a pair plasma. We also discuss a possible experimental setup, based on spectroscopic methods, to directly observe these classes of distributions.


Sign in / Sign up

Export Citation Format

Share Document