local universe
Recently Published Documents


TOTAL DOCUMENTS

652
(FIVE YEARS 120)

H-INDEX

64
(FIVE YEARS 11)

Universe ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 9
Author(s):  
Maura Pilia

Fast radio bursts (FRBs) represent one of the most exciting astrophysical discoveries of the recent past. The study of their low-frequency emission, which was only effectively picked up about ten years after their discovery, has helped shape the field thanks to some of the most important detections to date. Observations between 400 and 800 MHz, carried out by the CHIME/FRB telescope, in particular, have led to the detection of ∼500 FRBs in little more than 1 year and, among them, ∼20 repeating sources. Detections at low frequencies have uncovered a nearby population that we can study in detail via continuous monitoring and targeted campaigns. The latest, most important discoveries include: periodicity, both at the days level in repeaters and at the millisecond level in apparently non-repeating sources; the detection of an FRB-like burst from a galactic magnetar; and the localisation of an FRB inside a globular cluster in a nearby galaxy. The systematic study of the population at low frequencies is important for the characterisation of the environment surrounding the FRBs and, at a global level, to understand the environment of the local universe. This review is intended to give an overview of the efforts leading to the current rich variety of low-frequency studies and to put into a common context the results achieved in order to trace a possible roadmap for future progress in the field.


2021 ◽  
Vol 922 (2) ◽  
pp. 252
Author(s):  
N. Torres-Albà ◽  
S. Marchesi ◽  
X. Zhao ◽  
M. Ajello ◽  
R. Silver ◽  
...  

Abstract We present the analysis of simultaneous Nuclear Spectroscopic Telescope Array (NuSTAR) and XMM-Newton data of eight Compton-thick active galactic nuclei (CT-AGN) candidates selected in the Swift-BAT 100 month catalog. This work is part of an ongoing effort to find and characterize all CT-AGN in the Local (z ≤ 0.05) Universe. We used two physically motivated models, MYTorus and borus02, to characterize the sources in the sample, finding five of them to be confirmed CT-AGN. These results represent an increase of ∼19% over the previous NuSTAR-confirmed, BAT-selected CT-AGN at z ≤ 0.05, bringing the total number to 32. This corresponds to an observed fraction of ∼8% of all AGN within this volume-limited sample, although it increases to 20% ± 5% when limiting the sample to z ≤ 0.01. Out of a sample of 48 CT-AGN candidates, selected using BAT and soft (0.3−10 keV) X-ray data, only 24 are confirmed as CT-AGN with the addition of the NuSTAR data. This highlights the importance of NuSTAR when classifying local obscured AGN. We also note that most of the sources in our full sample of 48 Seyfert 2 galaxies with NuSTAR data have significantly different lines of sight and average torus column densities, favoring a patchy torus scenario.


2021 ◽  
Vol 922 (2) ◽  
pp. 208
Author(s):  
Adalyn Fyhrie ◽  
Jason Glenn ◽  
Naseem Rangwala ◽  
Jordan Wheeler ◽  
Sara Beck ◽  
...  

Abstract NGC 6240 is a luminous infrared galaxy in the local universe in the midst of a major merger. We analyze high-resolution interferometric observations of warm molecular gas using CO J = 3–2 and 6–5 in the central few kpc of NGC 6240 taken by the Atacama Large Millimeter Array. Using these CO line observations, we model the density distribution and kinematics of the molecular gas between the nuclei of the galaxies. Our models suggest that a disk model represents the data poorly. Instead, we argue that the observations are consistent with a tidal bridge between the two nuclei. We also observe high-velocity redshifted gas that is not captured by the model. These findings shed light on small-scale processes that can affect galaxy evolution and the corresponding star formation.


2021 ◽  
Vol 2145 (1) ◽  
pp. 012002
Author(s):  
Ponlawat Yoifoi ◽  
Wichean Kriwattanawong

Abstract This study presents the evolution of the galaxies in different matter density along redshift within the local universe. A sample of 702,352 galaxies was collected from the Sloan Digital Sky Survey (SDSS). Under the limitation of the spectroscopic data, the appropriate photometric redshift was used to represent the spectroscopic redshift in the range of 0.0 ≤ z ≤ 0.8. Number density of galaxies, galaxy’s colors, and star formation activities are considered to describe the evolution of galaxies. In summary, the number density is not clearly different although the Dec and RA of the sky areas are disparate, but it steeply declines along the redshift direction. Considering the number density together with galaxies’ Hα emission line from spectroscopic data, we find that both equivalent of hydrogen alpha and Hα flux tend to decrease along the redshift, similar to the decreasing trend of the number density. Furthermore, the galaxy color trend is found to be redder as a function of the redshift for the magnitude range of -19 ≤ M g ≤ -17. It implies that the overview of the star formation activity of the fainter galaxies at the lower redshift tend to show higher than the ones at higher redshift.


Galaxies ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 104
Author(s):  
Jie-Shuang Wang ◽  
Liang-Duan Liu

Precursor emissions are found in some short gamma-ray bursts (SGRBs). In this paper, we review the theories and observations of the SGRB precursor and discuss its prospect as an electromagnetic counterpart of the gravitational wave event produced by neutron star (NS) mergers. The observed luminosity, spectrum, and duration of precursors are explained by the magnetospheric interaction model during the inspiral or the cocoon/jet shock breakout model during the jet propagation. In general, these two models predict that the precursor will be weaker than the main GRB, but will be of a larger opening angle, which makes it an advantageous gamma-ray counterpart for NS mergers in the local Universe, especially for NS - black hole mergers with very low mass ratios, in which the main GRBs are not expected. The joint observation of the precursor, SGRB, and gravitational wave will help to reveal the jet launch mechanism and post-merger remnant.


Author(s):  
L. Koutoulidis ◽  
G. Mountrichas ◽  
I. Georgantopoulos ◽  
E. Pouliasis ◽  
M. Plionis

Author(s):  
K. Tisanic ◽  
G. De Zotti ◽  
A. Amiri ◽  
A. Khoram ◽  
S. Tavasoli
Keyword(s):  

2021 ◽  
Vol 922 (1) ◽  
pp. 59
Author(s):  
Fei Qin ◽  
David Parkinson ◽  
Cullan Howlett ◽  
Khaled Said

Abstract Measurements of cosmic flows enable us to test whether cosmological models can accurately describe the evolution of the density field in the nearby universe. In this paper, we measure the low-order kinematic moments of the cosmic flow field, namely bulk flow and shear moments, using the Cosmicflows-4 Tully−Fisher catalog (CF4TF). To make accurate cosmological inferences with the CF4TF sample, it is important to make realistic mock catalogs. We present the mock sampling algorithm of CF4TF. These mocks can accurately realize the survey geometry and luminosity selection function, enabling researchers to explore how these systematics affect the measurements. These mocks can also be further used to estimate the covariance matrix and errors of the power spectrum and two-point correlation function in future work. In this paper, we use the mocks to test the cosmic flow estimator and find that the measurements are unbiased. The measured bulk flow in the local universe is 376 ± 23 (error) ± 183 (cosmic variance) km s−1 at depth d MLE = 35 Mpc h −1, to the Galactic direction of (l, b) = (298° ± 3°, −6° ± 3°). Both the measured bulk and shear moments are consistent with the concordance Λ Cold Dark Matter cosmological model predictions.


2021 ◽  
Vol 921 (2) ◽  
pp. L43
Author(s):  
Michael Zevin ◽  
Isobel M. Romero-Shaw ◽  
Kyle Kremer ◽  
Eric Thrane ◽  
Paul D. Lasky

Abstract Orbital eccentricity is one of the most robust discriminators for distinguishing between dynamical and isolated formation scenarios of binary black hole mergers using gravitational-wave observatories such as LIGO and Virgo. Using state-of-the-art cluster models, we show how selection effects impact the detectable distribution of eccentric mergers from clusters. We show that the observation (or lack thereof) of eccentric binary black hole mergers can significantly constrain the fraction of detectable systems that originate from dynamical environments, such as dense star clusters. After roughly 150 observations, observing no eccentric binary signals would indicate that clusters cannot make up the majority of the merging binary black hole population in the local universe (95% credibility). However, if dense star clusters dominate the rate of eccentric mergers and a single system is confirmed to be measurably eccentric in the first and second gravitational-wave transient catalogs, clusters must account for at least 14% of detectable binary black hole mergers. The constraints on the fraction of detectable systems from dense star clusters become significantly tighter as the number of eccentric observations grows and will be constrained to within 0.5 dex once 10 eccentric binary black holes are observed.


Sign in / Sign up

Export Citation Format

Share Document