V.— On the Spectrum of Second Order Partial Differential Operators.

Author(s):  
K. J. Brown ◽  
I. M. Michael

SynopsisIn a recent paper, Jyoti Chaudhuri and W. N. Everitt linked the spectral properties of certain second order ordinary differential operators with the analytic properties of the solutions of the corresponding differential equations. This paper considers similar properties of the spectrum of the corresponding partial differential operators.

Author(s):  
Johann Schröder

SynopsisThis paper provides a survey on a class of methods to obtain sufficient conditions for the inversemonotonicity of second-order differential operators. Pointwise differential inequalities as well as weak differential inequalities are treated. In particular, the theory yields results on the relation between inverse-mo no tone operators and monotone definite operators, i.e. monotone operators in the Browder–Minty sense. This presentation is restricted to ordinary differential operators. Most methods explained here can also be applied to elliptic-parabolic partial differential operators in essentially the same way.


1994 ◽  
Vol 135 ◽  
pp. 165-196 ◽  
Author(s):  
Masatake Miyake ◽  
Masafumi Yoshino

In the study of ordinary differential equations, Malgrange ([Ma]) and Ramis ([R1], [R2]) established index theorem in (formal) Gevrey spaces, and the notion of irregularity was nicely defined for the study of irregular points. In their studies, a Newton polygon has a great advantage to describe and understand the results in visual form. From this point of view, Miyake ([M2], [M3], [MH]) studied linear partial differential operators on (formal) Gevrey spaces and proved analogous results, and showed the validity of Newton polygon in the study of partial differential equations (see also [Yn]).


2021 ◽  
Vol 13 ◽  
Author(s):  
Todor D. Todorov

  We discuss linear algebra of infinite-dimensional vector spaces in terms of algebraic (Hamel) bases. As an application we prove the surjectivity of a large class of linear partial differential operators with smooth ($\mathcal C^\infty$-coefficients) coefficients, called in the article \emph{regular}, acting on the algebraic dual $\mathcal D^*(\Omega)$ of the space of test-functions $\mathcal D(\Omega)$. The surjectivity of the partial differential operators guarantees solvability of the corresponding partial differential equations within $\mathcal D^*(\Omega)$. We discuss our result in contrast to and comparison with similar results about the restrictions of the regular operators on the space of Schwartz distribution $\mathcal D^\prime(\Omega)$, where these operators are often non-surjective. 


Sign in / Sign up

Export Citation Format

Share Document