scholarly journals Dynamics of the geodesic flow of a foliation

1988 ◽  
Vol 8 (4) ◽  
pp. 637-650 ◽  
Author(s):  
Paweł G. Walczak

AbstractThe geodesic flow of a foliated Riemannian manifold (M, F) is studied. The invariance of some smooth measure is established under some geometrical conditions on F. The Lyapunov exponents and the entropy of this flow are estimated. As an application, the non-existence of foliations with ‘short’ second fundamental tensors is obtained on compact negatively curved manifolds.

1988 ◽  
Vol 8 (2) ◽  
pp. 215-239 ◽  
Author(s):  
Masahiko Kanai

AbstractWe are concerned with closed C∞ riemannian manifolds of negative curvature whose geodesic flows have C∞ stable and unstable foliations. In particular, we show that the geodesic flow of such a manifold is isomorphic to that of a certain closed riemannian manifold of constant negative curvature if the dimension of the manifold is greater than two and if the sectional curvature lies between − and −1 strictly.


1976 ◽  
Vol 61 ◽  
pp. 73-84 ◽  
Author(s):  
Samuel I. Goldberg

In recent papers with S. S. Chern [3] and T.Ishihara [4], the author studied both the volume—and distance—decreasing properties of harmonic mappings thereby obtaining real analogues and generalizations of the classical Schwarz-Ahlfors lemma, as well as Liouville’s theorem and the little Picard theorem. The domain M in the first case was the open ball with the hyperbolic metric of constant negative curvature, and the target was a negatively curved Riemannian manifold with sectional curvature bounded away from zero. In this paper, it is shown that M may be taken to be any complete Riemannian manifold of non-positive curvature.


2013 ◽  
Vol 34 (4) ◽  
pp. 1310-1342 ◽  
Author(s):  
JOUNI PARKKONEN ◽  
FRÉDÉRIC PAULIN

AbstractLet$C$be a locally convex closed subset of a negatively curved Riemannian manifold$M$. We define the skinning measure${\sigma }_{C} $on the outer unit normal bundle to$C$in$M$by pulling back the Patterson–Sullivan measures at infinity, and give a finiteness result for${\sigma }_{C} $, generalizing the work of Oh and Shah, with different methods. We prove that the skinning measures, when finite, of the equidistant hypersurfaces to$C$equidistribute to the Bowen–Margulis measure${m}_{\mathrm{BM} } $on${T}^{1} M$, assuming only that${m}_{\mathrm{BM} } $is finite and mixing for the geodesic flow. Under additional assumptions on the rate of mixing, we give a control on the rate of equidistribution.


2015 ◽  
Vol 37 (3) ◽  
pp. 939-970 ◽  
Author(s):  
RUSSELL RICKS

Let$X$be a proper, geodesically complete CAT($0$) space under a proper, non-elementary, isometric action by a group$\unicode[STIX]{x1D6E4}$with a rank one element. We construct a generalized Bowen–Margulis measure on the space of unit-speed parametrized geodesics of$X$modulo the$\unicode[STIX]{x1D6E4}$-action. Although the construction of Bowen–Margulis measures for rank one non-positively curved manifolds and for CAT($-1$) spaces is well known, the construction for CAT($0$) spaces hinges on establishing a new structural result of independent interest: almost no geodesic, under the Bowen–Margulis measure, bounds a flat strip of any positive width. We also show that almost every point in$\unicode[STIX]{x2202}_{\infty }X$, under the Patterson–Sullivan measure, is isolated in the Tits metric. (For these results we assume the Bowen–Margulis measure is finite, as it is in the cocompact case.) Finally, we precisely characterize mixing when$X$has full limit set: a finite Bowen–Margulis measure is not mixing under the geodesic flow precisely when$X$is a tree with all edge lengths in$c\mathbb{Z}$for some$c>0$. This characterization is new, even in the setting of CAT($-1$) spaces. More general (technical) versions of these results are also stated in the paper.


Author(s):  
Christine Escher ◽  
Catherine Searle

Abstract Let ℳ 0 n {\mathcal{M}_{0}^{n}} be the class of closed, simply connected, non-negatively curved Riemannian n-manifolds admitting an isometric, effective, isotropy-maximal torus action. We prove that if M ∈ ℳ 0 n {M\in\mathcal{M}_{0}^{n}} , then M is equivariantly diffeomorphic to the free, linear quotient by a torus of a product of spheres of dimensions greater than or equal to 3. As a special case, we then prove the Maximal Symmetry Rank Conjecture for all M ∈ ℳ 0 n {M\in\mathcal{M}_{0}^{n}} . Finally, we show the Maximal Symmetry Rank Conjecture for simply connected, non-negatively curved manifolds holds for dimensions less than or equal to 9 without additional assumptions on the torus action.


Sign in / Sign up

Export Citation Format

Share Document